skip to content

Cambridge Graphene Centre

Research Centre on Graphene, Layered Crystals and Hybrid Nanomaterials
 

216. Dynamic Catalyst Restructuring during Carbon Nanotube Growth. M. Moseler, F. Cervantes-Sodi, S. Hofmann, G. Csányi, A. C. Ferrari; ACS NANO 4, 7587 (2010).

215. Viscous State Effect on the Activity of Fe Nanocatalysts. F. Cervantes-Sodi, T. P. McNicholas, J. G. Simmons Jr., J. Liu, G. Csányi, A. C. Ferrari, S. Curtarolo; ACS NANO 4, 6950 (2010) .

214. Sub 200fs pulse generation from a graphene mode-locked fiber laser. D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, A. C. Ferrari; Appl. Phys. Lett. 97, 203106 (2010) .

213. Density Gradient Ultracentrifugation of Nanotubes: Interplay of Bundling and Surfactants Encapsulation. F. Bonaccorso, T. Hasan, P. H. Tan, C. Sciascia, G. Privitera, G. Di Marco, P. G. Gucciardi, A. C. Ferrari;J. Phys. Chem. C, 114, 17267 (2010) .

212. 320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber. S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, A. K. Kar; Appl. Phys. Lett. 97, 111114 (2010) .

211. Solution-phase exfoliation of graphite for ultrafast photonics. T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi, G. Privitera, F. Bonaccorso, A. C. Ferrari; Phys. Stat. Sol. b, 247, 2953 (2010) .

210. Bismuth fiber integrated laser mode-locked by carbon nanotubes. E.J.R. Kelleher, J.C. Travers, Z. Sun, A.C. Ferrari, K.M. Golant, S.V. Popov, J.R. Taylor; Laser Phys. Lett.,7, 790 (2010) .

209. Antennas and Propagation of Implanted RFIDs for Pervasive Healthcare Applications. A. Sani, M. Rajab, R. Foster, Y. Hao; Proceedings of the IEEE, 98, 1648 (2010) .

208. Ultrafast fiber laser mode-locked by graphene based saturable absorber. Z. Sun, T. Hasan, D. Popa, F. Torrisi, F. Wang, F. Bonaccorso, A. C. Ferrari; Proceedings of Conference on Lasers and Electro-Optics (CLEO), CTuR1, (2010) .

207. Bismuth-doped fiber integrated ring laser mode-locked with a nanotube-based saturable absorber. E. J. R. Kelleher, J. C. Travers, Z. Sun, A. C. Ferrari, K. M. Golant, S. V. Popov, J. R. Taylor; Proceedings of Conference on Lasers and Electro-Optics (CLEO), CTuII4, (2010) .

206. Characterization of dynamic nonlinear absorption of carbon nanotube saturable absorber. F. Wang, D. Popa, Z. Sun, T. Hasan, F. Torrisi, A. C. Ferrari; Proceedings of Conference on Lasers and Electro-Optics (CLEO), JWA96, (2010) .

205. Generation of 63-nJ pulses from a fiber oscillator mode-locked by nanotubes. D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, A. C. Ferrari; Proceedings of Conference on Lasers and Electro-Optics (CLEO), JTuD50, (2010) .

204. Noise and stability in giant-chirp oscillators mode-locked with a nanotube-based saturable absorber. E. J. R. Kelleher, J. C. Travers, Z. Sun, A. C. Ferrari, S. V. Popov, J. R. Taylor; Proceedings of Conference on Lasers and Electro-Optics (CLEO), CThI4, (2010) .

203. 420 fs pulses from an ultrafast laser inscribed waveguide laser utilizing a carbon nanotube saturable absorber. S. J. Beecher, R. R. Thomson, N. D. Psaila, A. K. Kar, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari;Proceedings of Conference on Lasers and Electro-Optics (CLEO), CThI6, (2010) .

202. Graphene Photonics and Optoelectronics. F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari; Nature Photonics, 4, 611 (2010) .

201. Brownian Motion of Graphene. O. M. Maragò, F. Bonaccorso, R. Saija, G. Privitera, P. G. Gucciardi, M. A. Iatì, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, A. C. Ferrari; ACS NANO 4, 7515 (2010) (video).

200. Surface Enhanced Raman Spectroscopy of Graphene. F. Schedin, E. Lidorikis,A. Lombardo,V. G. Kravets, A. K.Geim, A. N. Grigorenko, K. S. Novoselov, A. C. Ferrari; ACS NANO 4, 5617 (2010) .

199. Ultrafast Stretched-Pulse Fiber Laser Mode-Locked by Carbon Nanotubes. Z. Sun, T. Hasan, F. Wang, A. G. Rozhin, I. H. White, A. C. Ferrari; Nano Res,3, 404(2010) .

198. Kinetic Treatment of Charge Carrier and Phonon Transport in Graphene. P. Lichtenberger, F. Schuerrer, S. Piscanec, A. C. Ferrari; Advances in Mathematics for Applied Sciences, 82, 413 (2010) .

197. Phonon-Assisted Electroluminescence from Metallic Carbon Nanotubes and Graphene. S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, C. Sciascia, F. Bonaccorso, K.-P. Bohnen, H. v. Lohneysen, M. M. Kappes, P. M. Ajayan, M. C. Hersam, A. C. Ferrari, R. Krupke; Nano Lett. 10, 1589 (2010)

196. A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser. Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, J. C. Travers, A. C. Ferrari; Nano Res,3, 653 (2010) . .

195. Scanning gate microscopy of current-annealed single layer graphene. M. R. Connolly, K. L. Chiou, C. G. Smith, D. Anderson, G. A. C. Jones, A. Lombardo, A. Fasoli, A. C. Ferrari; Appl. Phys. Lett. 96, 113501 (2010) .

194. First-Principles Prediction of Doped Graphane as a High-Temperature Electron-Phonon Superconductor. G. Savini, A. C. Ferrari, F. Giustino; Phys. Rev. Lett. 105,037002 (2010) .

193. Graphene Mode-Locked Ultrafast Laser. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari; ACS NANO 4, 803 (2010) .


Notice to the web visitors:


Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or part, without prior written permission from the publisher and the web site owner.

Latest news

A University of Cambridge spin-out company working to improve AI efficiency and bandwidth has raised €25 million in new funding.

26 March 2025

CamGraPhIC - co-founded Professor Andrea Ferrari, Director of the Cambridge Graphene Centre , and Dr Marco Romagnoli of CNIT in Italy - is developing new types of photonic circuits for energy-efficient, high-bandwidth, optical interconnect technology. The investment will support continued innovation in graphene photonics...

Cambridge Graphene Centre Successfully Installs Park NX20 AFM for LMRF, Advancing Nanoscale Research

7 March 2025

On 7 March 2025 , the Cambridge Graphene Centre (CGC) celebrated the successful sign-off of the Park NX20 Atomic Force Microscope (AFM) , a major milestone for the Layered Materials Research Foundry (LMRF) . This state-of-the-art system will significantly enhance CGC’s capabilities in nanoscale material characterization ...

Cambridge Graphene Centre Receives Cutting-Edge AFM Equipment from Park Systems for LMRF Project

31 January 2025

The Cambridge Graphene Centre (CGC) has received a state-of-the-art Atomic Force Microscope (AFM) from Park Systems as part of the Layered Materials Research Foundry (LMRF) project. This advanced AFM system, the NX20 model, is set to enhance research capabilities in the exploration of layered materials, providing critical...