skip to content

Cambridge Graphene Centre

Research Centre on Graphene, Layered Crystals and Hybrid Nanomaterials
 

293. Raman spectroscopy of graphite in high magnetic fields: Electron-phonon coupling and magnetophonon resonance. Y. Kim, Y. Ma, A. Imambekov, N. G. Kalugin, A. Lombardo, A. C. Ferrari, J. Kono, D. Smirnov; AIP Conf. Proc. 1566, 165 (2013).

292. Gigahertz Multi-Transistor Graphene Integrated Circuits. R. Sordan, A. C. Ferrari; IEEE International Electron Devices Meeting (IEDM) 1.1 (2013).

291. Evanescent-wave coupled right angled buried waveguide: Applications in carbon nanotube mode-locking. R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, A. K. Kar; Appl. Phys. Lett103, 221117 (2013).

290. Optical trapping and manipulation of nanostructures, O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, A. C. Ferrari; Nature Nanotechnology 8, 807 (2013)

289. Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector. C. A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. Kulmala, R. S. Sundaram, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, U. Keller; Optics Express 21, 31548 (2013).

288. Nanotubes Complexed with DNA and Proteins for Resistive-Pulse Sensing. J. Sha, T. Hasan, S. Milana, C. Bertulli, N. A. W. Bell, G. Privitera, Z. Ni, Y. Chen, F. Bonaccorso, A. C. Ferrari, U. F. Keyser, Y. Y. S. Huang; ACS Nano 7, 8857 (2013).

287. Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA. M. Zhang, E. J. R. Kelleher, T. H. Runcorn, V. M. Mashinsky, O. I. Medvedkov, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, J. R. Taylor; Optics Express 21, 23261 (2013).

286. Spectroscopic characterization of protein-wrapped single-wall carbon nanotubes and quantification of their cellular uptake in multiple cell generations, C Bertulli, H J Beeson, T Hasan, Y Y S Huang; Nanotechnology, 24, 265102 (2013).

285. Mode-locking Using Right-angle Waveguide, Based Nanotube Saturable Absorber. G. Brown, R.R. Thomson, S.J. Beecher, R. Mary, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A.C. Ferrari, A.K. Kar; CLEO PR&OECC/PS, WA4-4 (2013).

284. Electron-beam-induced direct etching of graphene. C. Thiele, A. Felten, T. J. Echtermeyer, A. C. Ferrari, C. Casiraghi, H. V. Löhneysen, R. Krupke; Carbon 64, 84 (2013).

283. 2 to 3 µm Raman-soliton continuum enabled by a nanotube mode-locked Tm-doped MOPFA. M. Zhang, E. J. R. Kelleher, T. H. Runcorn, V. M. Mashinsky, O. I. Medvedkov, E. M. Dianov, Z. Sun, D. Popa, T. Hasan, A. C. Ferrari, B. H. Chapman, S. V. Popov, J. R. Taylor; CLEO: Science and Innovations, CW1M.5, (2013).

282. Wavelength Tunable Graphene Modelocked VECSEL C. A. Zaugg, Z. Sun, D. Popa, S. Milana, T. Kulmala, R. S. Sundaram, V. J. Wittwer, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J.-H. Ahn, A. C. Ferrari, U. Keller; CLEO: Science and Innovations, CW1G.4, (2013).

281. Ultrafast collinear scattering and carrier multiplication in graphene. D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, M. Polini; Nature Communications4, 1987 (2013).

280. Measurement of Filling-Factor-Dependent Magnetophonon Resonances in Graphene Using Raman Spectroscopy. Y. Kim, J. M. Poumirol, A. Lombardo, N. G. Kalugin, T. Georgiou, Y. J. Kim, K. S. Novoselov, A. C. Ferrari, J. Kono, O. Kashuba, V. I. Fal'ko, D. Smirnov; Phys. Rev. Lett.110, 227402 (2013),(Supplementary material).

279. Non-equilibrium dynamics of photo-excited electrons in graphene: collinear scattering, Auger processes, and the impact of screening. A. Tomadin, D. Brida, G. Cerullo, A. C. Ferrari, M. Polini; Phys. Rev. B88, 035430 (2013).

278. Raman scattering efficiency of graphene. P. Klar, E. Lidorikis, A. Eckmann, I. A. Verzhbitskiy, A. C. Ferrari, C. Casiraghi; Phys. Rev. B87, 205435 (2013).

276.Controlling Sub-nm Gaps in Plasmonic Dimers using Graphene. J. Mertens, A. L. Eiden, D. O. Sigle, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, J. J. Baumberg; Nano Lett13, 5033 (2013).

275. Sorting Nanoparticles By Centrifugal Fields in Clean Media. F. Bonaccorso, M. Zerbetto, A. C. Ferrari, V. Amendola; J. Phys. Chem. C117, 13217 (2013).

274. Raman spectroscopy as a versatile tool for studying the properties of graphene. A. C. Ferrari, D. M. Basko; Nature Nanotech8, 235 (2013) (Supplementary Information).

273. Electroluminescence in Single Layer MoS2. R. S. Sundaram, M. Engel, A. Lombardo, R. Krupke, A. C. Ferrari, Ph. Avouris, M. Steiner; Nano Lett., 13, 1416 (2013).

272. Multiwall Nanotubes, Multilayers, and Hybrid Nanostructures: New Frontiers for Technology and Raman Spectroscopy, F. Bonaccorso, P. H. Tan, A. C. Ferrari; ACS Nano7, 1838 (2013).

271. All-fiber Yb-doped Laser Mode-locked by Nanotubes, Z. Zhang, D. Popa, Z. Sun, T. Hasan, A. C. Ferrari, F. Ö. Ilday;
Eur. Conf. Lasers Electro-Optics (ECLEO)CJ_P_39 (2013).

270. 1.5 GHz Pulse Generation From a Monolithic Waveguide Laser With a Graphene-Film Saturable Output Coupler, R. Mary, S. J. Beecher, G. Brown, F. Torrisi, S. Milana, D.Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, A. K. Kar; Optics Express 21, 7943 (2013).

269. Raman spectroscopy of shear and layer breathing modes in multilayer MoS2, X. Zhang, W. P. Han, J. B. Wu, S. Milana, Y. Lu, Q. Q. Li, A. C. Ferrari, P. H. Tan; Phys. Rev. B87, 115413 (2013).

268. 2μm Solid-State Laser Mode-locked By Single-Layer Graphene, A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, A.C. Ferrari; Appl. Phys. Lett102, 013113 (2013).

267. Vertically aligned smooth ZnO nanorod films for planar device applications, D. Singh, A. A. Narasimulu, L. Garcia-Gancedo, Y. Q. Fu, T. Hasan, S. S. Lin, J. Geng, G. Shao, J. K. Luo; J. Mater. Chem. C 1, 2525 (2013).

266. Ab initio study of electronic and optical behavior of two-dimensional silicon carbide, X. Lin, S. Lin, Y. Xu, A. A. Hakro, T. Hasan, B. Zhang, B. Yu, J. Luo, E. Li, H. Chen; J. Mater. Chem. C 1, 2131 (2013).

265. Ab initio optical study of graphene on hexagonal boron nitride and fluorographene substrates, X. Lin, Y. Xu, A. A. Hakro, T. Hasan, R. Hao, B. Zhang, H. Chen; J. Mater. Chem. C 1 1618 (2013).

264. CW-pumped short pulsed 1.12 μm Raman laser using carbon nanotubes. C. E. S. Castellani, E. J. R. Kelleher, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, J. R. Taylor; Laser Phys. Lett10, 015101 (2013).

 

 

 


 

Notice to the web visitors:

 


Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or part, without prior written permission from the publisher and the web site owner.

Latest news

Cambridge Graphene Centre Successfully Installs Park NX20 AFM for LMRF, Advancing Nanoscale Research

7 March 2025

On 7 March 2025 , the Cambridge Graphene Centre (CGC) celebrated the successful sign-off of the Park NX20 Atomic Force Microscope (AFM) , a major milestone for the Layered Materials Research Foundry (LMRF) . This state-of-the-art system will significantly enhance CGC’s capabilities in nanoscale material characterization ...

Cambridge Graphene Centre Receives Cutting-Edge AFM Equipment from Park Systems for LMRF Project

31 January 2025

The Cambridge Graphene Centre (CGC) has received a state-of-the-art Atomic Force Microscope (AFM) from Park Systems as part of the Layered Materials Research Foundry (LMRF) project. This advanced AFM system, the NX20 model, is set to enhance research capabilities in the exploration of layered materials, providing critical...

Cambridge Joins PIXEurope to Revolutionise Photonic Chips

2 January 2025

The University of Cambridge has been selected as one of two UK institutions in PIXEurope, a prestigious European consortium of 20 research organisations aimed at advancing photonic chip technology. Unlike traditional electronic chips, photonic chips use light to deliver faster, more energy-efficient performance. Leading...