skip to content

Cambridge Graphene Centre

Research Centre on Graphene, Layered Crystals and Hybrid Nanomaterials
 

322. NIR silicon Schottky photodetector: From metal to graphene M.Casalino, G. Coppola, .Sirleto, M.Iodice, M.Gioffre, I. Rendina, U. Sassi, A. Lombardo, S. Milana, R. S. Sundaram, A. C. Ferrari; 2014 Fotonica AEIT Italian Conference on Photonics Technologies, (2014).

321. Silicon photodetectors based on internal photoemission effect: The challenge of detecting near infrared light. M.Casalino, G. Coppola, M.Iodice, I.Rendina, U.Sassi, A.Lombardo, S.Milana, R.S.Sundaram, A. C. Ferrari; 2014 16th International Conference on Transparent Optical Networks (ICTON), We.B2.3 (2014).

320. Graphene-coated Rayleigh SAW Resonators for NO2 Detection. B. de Nijs, S. Thomas, M. Cole, A. De Luca, F. Torrisi, A. C. Ferrari, F. Udrea, J. W. Gardner; Procedia Engineering, 87, 999 (2014).

319. Resonant Raman spectroscopy of twisted multilayer graphene. J-B. Wu, X. Zhang, M. Ijäs, W-P. Han, X.-F. Qiao, X-L. Li, D-S. Jiang, A. C. Ferrari, P.-H. Tan; Nature Communications, 5, 5309 (2014), Supplementary information.

318. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. F. H. L. Koppens, T. Mueller, Ph. Avouris, A. C. Ferrari, M. S. Vitiello, M. Polini; Nature Nanotech., 9, 780 (2014).

317. Electrifying inks with 2d materials. F. Torrisi, J. N. Coleman; Nature Nanotech., 9, 738 (2014).

316. Characterization of Ni thin films following thermal oxidation in air. L. De Los Santos Valladares, A. Ionescu, S. Holmes, C. H. W. Barnes, A. Bustamante Domínguez, O. Avalos Quispe, J. C. González, S. Milana, M. Barbone, A. C. Ferrari, H. Ramos, Y. Majima; J. Vac. Sci. Technol. B, 32, 051808 (2014).

315. Enhanced performance of polymer:fullerene bulk heterojunction solar cells upon graphene addition. P. Robaeys, F. Bonaccorso, E. Bourgeois, J. D'Haen, W. Dierckx, W. Dexters, D. Spoltore, J. Drijkoningen, J. Liesenborgs, A. Lombardo, A. C. Ferrari, F. Van Reeth, K. Haenen, J. V. Manca, M. Nesladek; Appl. Phys. Lett105, 083306 (2014).

314. All-fiber Passively Q-switched Laser Based on Tm 3+-doped Tellurite Fiber, P.-W. Kuan, K. Li, L. Zhang, X. Fan, T. Hasan, F. Wang, L. Hu; Photonics Technol. Lett. 27, 689 (2014).

313. Fast Response and High Sensitivity ZnO/glass Surface Acoustic Wave Humidity Sensors Using Graphene Oxide Sensing Layer, W. Xuan, M. He, N. Meng, X. He, W. Wang, J. Chen, T. Shi, T. Hasan, Z. Xu, Y. Xu, J. K. Luo; Scientific Reports 4, 7206 (2014).

312. Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2)R. I. Woodward, E. J. R. Kelleher, R. C. T. Howe, G. Hu, F. Torrisi, T. Hasan, S. V. Popov, J. R. Taylor; Optics Express 22, 31113 (2014).

311. Scalar Nanosecond Pulse Generation in a Nanotube Mode-Locked Environmentally Stable Fiber Laser. R. I. Woodward, E. J. R. Kelleher, D. Popa, T. Hasan, F. Bonaccorso, A. C. Ferrari, S. V. Popov, J. R. Taylor; IEEE Photonics Technology Letters 26, 1672 (2014).

310. Graphene saturable absorber power scaling laser. Z. Jiang, G. E. Bonacchini, D. Popa, F. Torrisi, A. K. Ott, V. J. Wittwer, D. Purdie, A. C. Ferrari; CLEO: Science and Innovations, JTu4A.67 (2014).

309. Synchronously coupled fiber lasers and sum frequency generation using graphene composites.M. Zhang, E. J. Kelleher, T. H. Runcorn, D. Popa, F. Torrisi, A. C. Ferrari; CLEO: Science and Innovations, STu1I.2 (2014).

308. Sub-50 fs compressed pulses from a graphene-mode locked fiber laser.D. Purdie, D. Popa, V. J. Wittwer, Z. Jiang, F. Torrisi, A. C. Ferrari; CLEO: Science and Innovations, STu1N.8 (2014).

307. Fluorinated graphene and hexagonal boron nitride as ALD seed layers for graphene-based van der Waals heterostructuresH. Guo, Y. Liu, Y. Xu, N. Meng, H. Wang, T. Hasan, X. Wang, J. Luo, B. Yu; Nanotechnology 25, 355202 (2014).

306. Nanotube mode-locked, low repetition rate pulse source for fiber based supercontinuum generation at low average pump power. R. I. Woodward, E. J. Kelleher, T. H. Runcorn, D. Popa, T. Hasan, A. C. Ferrari; CLEO: Science and Innovations, STh3N.8 (2014).

305. Doping dependence of the Raman spectrum of defected graphene. M. Bruna, A. K. Ott, M. Ij ̈as, D. Yoon, U. Sassi, A. C. Ferrari; ACS Nano 8, 7432 (2014).

304. Q-switched Fiber Laser with MoS2 Saturable AbsorberR. I. Woodward, E. J. Kelleher, T. H. Runcorn, S. V. Popov, F. Torrisi, R. C. T. Howe, T. Hasan, CLEO: Science and Innovations, SM3H. 6 (2014).

303. Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires, Z. Yang, D. Wang, C. Meng, Z. Wu, Y. Wang, Y. Ma, L. Dai, X. Liu, T. Hasan, X. Liu, Q. Yang; Nano Lett. 14, 3153 (2014).

302. Double Wall Carbon Nanotubes for Wide-Band, Ultrafast Pulse Generation. T. Hasan, Z. Sun, P. H. Tan, D. Popa, E. Flahaut, E. J. R. Kelleher, F. Bonaccorso, F. Wang, Z. Jiang, F. Torrisi, G. Privitera, V. Nicolosi, A. C. Ferrari; ACS Nano 8, 4836 (2014).

301. Graphene modelocked VECSELs. C. A. Zaugg, V. J. Wittwer, Z. Sun, D. Popa, S. Milana, T. S. Kulmala, R. S. Sundaram, M. Mangold, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, U. Keller; Proc. SPIE 8966, Vertical External Cavity Surface Emitting Lasers (VECSELs) IV, 896607 (2014).

300. Graphene saturable absorbers for VECSELs. V. J. Wittwer, C. A. Zaugg, Z. Sun, D. Popa, S. Milana, T. S. Kulmala, R. S. Sundaram, M. Mangold, M. Golling, Y. Lee, J. H. Ahn, U. Keller, A. C. Ferrari; Proc. SPIE 8966, Vertical External Cavity Surface Emitting Lasers (VECSELs) IV, 89660X (2014).

299. Exciton Energy Transfer in Carbon Nanotubes Probed by Photoluminescence. P. H. Tan, T. Hasan, F. Bonaccorso, A. C. Ferrari; in Luminescence: The Instrumental Key to the Future of Nanotechnology, (ed: Adam Gilmore) Pan Stanford Publishing Ltd., Singapore (2014)

298. Effects of Electron-Electron Interactions on Electronic Raman Scattering of Graphite in High Magnetic Fields. Y. Ma, Y. Kim, N. G. Kalugin, A. Lombardo, A. C. Ferrari, J. Kono, A. Imambekov, D. Smirnov; Phys. Rev. B 89, 121402(R) (2014).

297. Graphene nanoribbon blends with P3HT for organic electronics. M. E. Gemayel, A. Narita, L. F. Dössel, R. S. Sundaram, A. Kiersnowski, W. Pisula, M. R. Hansen, A. C. Ferrari, E. Orgiu, X. Feng, K. Müllen, P. Samorì; Nanoscale 6, 6031 (2014).

296. High performance bilayer-graphene Terahertz detectors. D. Spirito, D. Coquillat, S. L. De Bonis, A. Lombardo, M. Bruna, A. C. Ferrari, V. Pellegrini, A. Tredicucci, W. Knap, M. S. Vitiello; Appl. Phys. Lett. 104, 061111 (2014).

295. Photo-thermoelectric and photoelectric contributions to light detection in metal-graphene-metal photodetectors. T.J. Echtermeyer, P.S. Nene, M. Trushin, R.V. Gorbachev, A.L. Eiden, S. Milana, Z. Sun, J. Schliemann, E. Lidorikis, K.S. Novoselov, A. C. Ferrari; Nano Lett. 14, 3733 (2014).

294. Anomalous low-temperature Coulomb drag in graphene-GaAs heterostructures . A. Gamucci, D. Spirito, M. Carrega, B. Karmakar, A. Lombardo, M. Bruna, L. N. Pfeiffer, K. W. West, A. C. Ferrari, M. Polini, V. Pellegrini; Nature Communications 5, 5824 (2014).


 

Notice to the web visitors:

 
Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or part, without prior written permission from the publisher and the web site owner.

Latest news

Cambridge Graphene Centre: a springboard for talents

2 March 2023

Image caption: CGC alumni clockwise from top left: Ellen Smith, Anna Ott, Silvia Milana, Flavia Tomarchio The mission of the Cambridge Graphene Centre is to investigate the science and technology of graphene, carbon allotropes, layered crystals and hybrid nanomaterials. Throughout its first decade as a locus for pioneering...

Graphene Goes to Space and to the Moon

9 December 2022

New rocket and lunar experiments involving graphene are informing space exploration. Applying graphene to the wheels of the Rashid moon rover will reveal whether this super strong material is also ‘Moon-proof’. Meanwhile, testing graphene-inks in a sounding rocket will test their ability to enable 3D printing in space –...