skip to primary navigationskip to content

Cambridge Graphene Centre

Research Centre on Graphene, Layered Crystals and Hybrid Nanomaterials

Studying at Cambridge



    192. A compact, high power, ultrafast laser mode-locked by carbon nanotubes. Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O'Neill, A. C. Ferrari; Appl. Phys. Lett. 95, 253102 (2009) .

    191. The morphology of silicon nanowire samples: A Raman study. S. Khachadorian, H. Scheel, M. Cantoro, A. Colli, A. C. Ferrari, C. Thomsen; Phys. Stat. Sol. b, 246, 2809 (2009) .

    190.Generation and direct measurement of giant chirp in a passively mode-locked laser. E. J. R. Kelleher, J. C. Travers, E. P. Ippen, Z. Sun, A. C. Ferrari, S. V. Popov, J. R. Taylor; Optics Letters 34, 3526 (2009) .

    189.Fabrication of graphene nanoribbons via nanowire lithography. A. Fasoli, A. Colli, A. Lombardo, A. C. Ferrari; Phys. Stat. Sol. b, 246, 2514 (2009) .

    188. Nanotube–Polymer Composites for Ultrafast Photonics. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, A. C. Ferrari; Adv. Materials 21, 3874 (2009) .

    187. Ultrafast Erbium-doped Fiber Laser Mode-locked by a Carbon Nanotube Saturable Absorber. Z. Sun, A. G. Rozhin, F. Wang, W. I. Milne, R.V. Penty, I. H. White, A. C. Ferrari; Proceedings of Conference on Lasers and Electro-Optics (CLEO), CML5, (2009) .

    186. Rotation Detection in Light-Driven Nanorotors. P. H. Jones, F. Palmisano, F. Bonaccorso, P. G. Gucciardi, G. Calogero, A. C. Ferrari, O. M. Maragò; ACS NANO 3, 3077(2009) .

    185. Making Graphene Luminsecent by Oxygen Plasma Treatment. T. Gokus, R. R. Nair, A. Bonetti, M. Bohmler, A. Lombardo, K. S. Novoselov, A. K. Geim, A. C. Ferrari, A. Hartschuh; ACS NANO 3, 3963 (2009) .

    184. Optically Transparent Ultra-Wideband Antenna. A. Katsounaros, Y. Hao, N. Collings, W. Crossland; Electronics Letters, 45, 722 (2009) .

    183. Nanosecond-pulse fiber lasers mode-locked with nanotubes. E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, J. R. Taylor; Appl. Phys. Lett. 95, 111108 (2009) .

    182. Subjecting a Graphene Monolayer to Tension and Compression. G. Tsoukleri, J. Parthenios, K. Papagelis, R. Jalil, A. C. Ferrari, A. K. Geim, K. S. Novoselov, C. Galiotis; Small 5, 2397 (2009) .

    181. Dielectrophoretic Assembly of High-Density Arrays of Individual Graphene Devices for Rapid Screening. A. Vijayaraghavan, C. Sciascia, S. Dehm, A. Lombardo, A. Bonetti, A. C. Ferrari, R. Krupke; ACS NANO,3, 1729 (2009) .

    180. Electron-electron interactions and doping dependence of the two-phonon Raman intensity in Graphene. D. M. Basko, S. Piscanec, A. C. Ferrari; Phys. Rev. B 80, 165413 (2009) .

    179. Deep reactive ion etching as a tool for nanostructure fabrication. Y. Q. Fu, A. Colli, A. Fasoli, J. K. Luo, A. J. Flewitt, A. C. Ferrari, W. I. Milne; J. Vac. Sci. Technol. B 27(3), 1520 (2009) .

    178. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. T. M. G. Mohiuddin, A. Lombardo, R. R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. M. Basko, C. Galiotis, N. Marzari, K. S. Novoselov, A. K. Geim, A. C. Ferrari; Phys. Rev. B 79, 205433 (2009) .

    177. Top-Gated Silicon Nanowire Transistors in a Single Fabrication Step. A. Colli, A. Tahraoui, A. Fasoli, J. M. Kivioja, W. I. Milne, A. C. Ferrari; ACS NANO, 3, 1587(2009) .

    176. Photonics with Multiwall Carbon Nanotube Arrays. E. Lidorikis, A. C. Ferrari; ACS NANO, 3, 1238 (2009) .

    175. Phonon renormalisation in doped bilayer graphene. A. Das, B. Chakraborty, S. Piscanec, S. Pisana, A. K. Sood, A. C. Ferrari; Phys. Rev. B, 79, 155417 (2009) .

    174. Plasma restructuring of catalysts for chemical vapor deposition of carbon nanotubes, M. Cantoro, S. Hofmann, C. Mattevi, S. Pisana, A. Parvez, A. Fasoli, C. Ducati, V. Scardaci, A. C. Ferrari, J. Robertson; J. Appl. Phys 105, 064304 (2009) .

    173. Raman Spectroscopy of Graphene Edges. C. Casiraghi, A. Hartschuh, H. Qian, S. Piscanec, C. Georgi, A. Fasoli, K. S. Novoselov, D. M. Basko, A. C. Ferrari; Nano Letters 9, 1433 (2009) .

    172. Triple F—a comet nucleus sample return mission. M. Küppers, et al; Exp Astron 23, 809 (2009) .

    171. A light touch on nanotubes: femtonewton force sensing and nanometric spatial resolution. O. Maragò, P. Jones, A. C. Ferrari; SPIE Newsroom doi:10.1117/2.1200901.1475 (2009) .

    170. Control of graphene’s properties by reversible hydrogenation. D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, K. S. Novoselov; Science, 323, 610 (2009) (S1).

Notice to the web visitors:

Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or part, without prior written permission from the publisher and the web site owner.

RSS Feed Latest news

Let there be Light: Deterministic arrays of Quantum Dots

May 22, 2017

Large scale, fully integrable arrays of single photon quantum emitters are demonstrated in layered materials, which could lead to hybrid on-chip photonics devices for networks and sensing.

Cambridge Graphene Centre Technology Day

May 17, 2017

On 25th May, the Cambridge Graphene Centre’s industrial partners will gather in Cambridge for a day of networking, exhibitions and panel discussions.

Graphene inks mesmerise in EPSRC Photography Competition

Apr 03, 2017

James Macleod's stunning image of graphene inks has scooped more prizes in the 2017 EPSRC Photography Competition

Prof. Ferrari Awarded NANOSMAT Award 2017

Mar 30, 2017

Congratulations to Prof. Ferrari, who has been announced as the recipient of the NANOSMAT Award 2017 for "outstanding" contributions to nanoscience and nanotechnology.

Scalable 100% Yield Production of Conductive Graphene Inks

Feb 21, 2017

Conductive inks based on graphene and layered materials are key for low-cost manufacturing of flexible electronics, novel energy solutions, composites and coatings. A new method for liquid-phase exfoliation of graphite paves the way for scalable production.

View all news