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Abstract  

  

This perspective addresses the topic of harnessing the tools of Artificial Intelligence (AI) for 

boosting innovation in functional materials design and engineering as well as discovering new 

materials for targeted applications in biomedicine, composites, nanoelectronics or quantum 

technologies. It gives a current view of experts in the field, insisting on challenges and 

opportunities provided by the development of large materials databases, novel schemes for 

implementing AI into materials production and characterization as well as progress in the 

quest of simulating physical and chemical properties of realistic atomic models reaching the 

trillion atoms scale and with near ab initio accuracy.  

  

  

Page 2 of 31AUTHOR SUBMITTED MANUSCRIPT - JPMATER-101248.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Introduction  

  

Innovative material design and engineering  

 

The design and engineering of innovative advanced materials is facing a variety of challenges 

in today´s industries, including the access to proper design strategies for reaching upper 

performances of materials for targeted applications, the discovery of alternatives and the 

search for more functional intelligent materials which can help solving health, energy or 

environmental issues. Such new functionalities often require complex material structure, such 

as complex alloys, composites, heterostructures, etc. Traditional methods of material 

modelling cannot cope with such demands. In this context the use of Artificial Intelligence (AI) 

tools has become cornerstone for boosting innovation strategies and ensuring sustainability 

and safe-by-design approaches.  

  

The development and availability of material databases is a fundamental part for further 

training AI models (machine learning and so on) able to cope with diversity and complexity 

and extract hidden information which could ultimately offer further intelligent guidance in 

optimisation and also materials (property) discovery. However, the multiplicity of databases 

also calls for efforts in improving universality in development languages, interoperability as 

well as integrated workflows which can connect information concerning the structure to the 

end physical or chemical properties of materials of concern. More, the needs for more and 

more predictive modelling and capability of simulation tools to cope with systems reaching 

the trillion atoms-scale limit (while keeping a near ab initio accuracy) presents grand 

challenges and demands for novel workflows to be developed and more synergies between 

academic research and industrial developments. To this end, property and functions-oriented 

databases are required, especially when aiming at solving the inverse problem of finding the 

material with predetermined properties.  

  

On the other side, Intelligent materials are defined as structural materials with advanced 

functionalities and can be classified as structure-mimetic (mimicking the structure of 

organisms) and function-mimetic (mimicking the function of organisms). Intelligent materials 

target self-sensing of the material during its use (e.g., damage, loads, shape, temperature, 

pressure, etc.) and/or target adaptive actuation (e.g., changing deformation, colour, shape, 

inner stresses, stiffness, temperature, etc.) which depends on the biological or environmental 

conditions (humidity, pH, temperature, etc).  The quest for more innovative intelligent 

materials depends on the capability of AI tools to provide proper booster in benchmarking, 

fast and precise analysis and extrapolation for materials design.  

  

As a result, the synergy between the activities of computer scientists, material engineers and 

AI developers with the experimental activities and elaboration of novel types of functional 

intelligent materials has become key for advanced development in innovative materials design 

and engineering.  

  

In this perspective, we provide snapshots about efforts made in a variety of different fields 

and visions of international experts, searching for the same common objective, that is the 
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deployment of AI tools for an accelerated development of materials design and deeper access 

to hidden dimensions of materials growth, structure-property correlations and reverse 

engineering strategies. Such a vast field of research calls for structuring the exploding amount 

of information and also for implementing chains of tools able to communicate information 

and extract essential parameters that can be ultimately accessible to the largest possible 

public.  In that perspective, international events such as AI4AM (www.ai4am.net) are enabling 

platforms to gather communities, facilitate networking, roadmapping and ultimately enhance 

our knowledge and methodologies.  

 

1. Higher-Order Pattern Recognition for Materials Informatics using Explainable Artificial 

Intelligence  

Explainable artificial intelligence (XAI) is an emerging field in computer science based in 

statistics that can augment materials informatics workflows.  XAI can be used as a forensic 

analysis technique to understand the consequences of data, model, and application decisions, 

or as a model refinement method capable of distinguishing important information [1,2].  This 

approach is often used to explain the how the structural characteristics of materials (features) 

contribute to a target property prediction using tools such as feature importance rankings that 

highlight useful or nuisance variables. However, an alternative approach is to apply similar 

methods to the instance space and identify influential or unproductive data instances 

(materials). Data sets contain a range of special cases such as outliers (unusual types), 

archetypes (pure types), stereotypes (those assumed to be representative) and prototypes 

(those that actually are representative), and groups of data instances (clusters) that are similar 

in the high dimensional feature space. The amount of influence these special types of data 

instances have on a pattern, cluster or prediction is rarely explored or quantified, but they can 

also have a profound effect on model architecture and predictive ability.  

  

Recent work has shown that is it possible to decompose the residuals of machine learning loss 

functions to better understand how individual materials contribute to model predictions [3].  

This has been used to explain how including certain materials in a data set can improve the 

ability to accurately predict the properties of others [4].  This research has now been 

expanded to explain unsupervised patterns in data and identify special subsets of materials 

worthy of detailed consideration [5]. The first step is to represent materials using Shapley 

values, which are a solution in cooperative game theory where each game is assigned a unique 

distribution of a total surplus generated by the coalition of all players [1].   A popular tool for 

studying cost-sharing, market analytics and voting, in materials informatics the game is usually 

the model, and the players are the materials.  By testing the impact of removing individual 

instances or features, and aggregating across the feature space or instance space, respectively, 

Shapley values quantify how much the inclusion or exclusion of a particular material (or a 

structural feature) affects the result.  The second step is to transform the data, represented 

by its Shapley values, in different ways to reveal hidden groups or patterns.  This two-step 

process aids the data analysis process, and acts as a precursor to the residual decomposition; 

simultaneously finding influential materials in the data set and quantifying how they are 

impacting the prediction of other materials.  
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The novelty in this new model-agnostic approach is that the cooperative game is the 

underlying data distribution, not a model, which opens up the opportunity for explainable 

unsupervised learning. This enables researchers to better understand how a machine learning 

methods use the latent information captured in the data, informing better decisions about 

what kind of materials to make or simulate, what kind of characterisation or analysis to 

perform, and how these choices impact the outcome.  

  

2. Machine Learning for autonomous microscopy: from physics discovery to atomic 

fabrication  

Electron and scanning probe microscopies are now one of the foundational methods for 

characterization of structure and functional properties of matter on the nanometer and 

atomic scales. Scanning probe microscopy (SPM) enables rapid characterization of surface 

topography and mechanical, magnetic, ferroelectric, and electrochemical properties. Electron 

microscopy now provides comprehensive probe of structure, chemical composition, and 

vibrational properties at nanometer and atomic scales.   

  

For most domain areas, microscopies traditionally represent downstream characterization 

methods in materials discovery cycle yielding the qualitative data. Recent progress in 

quantitative SPMs and scanning transmission electron microscopy (STEM) is challenging this 

paradigm, delivering large volumes of quantitative structural and high-veracity property data. 

However, the sheer volume of data has necessitated very complex analyses, minimizing the 

impact. The recent progress in machine learning (ML) and rapid data analytics for 

postacquisition analyses and particularly active learning methods that can be operationalized 

on active microscopes offer to change this paradigm [6]. On the data analytic side, ML provides 

the flexibility and speed necessary to analyze large volumes of multidimensional imaging and 

spectroscopy data for building low-dimensional representations and, in many, cases extraction 

of relevant materials parameters.   

  

A fundamentally new spectrum of opportunities emerges in the context of active learning, 

where ML based workflows not only inform human-based decision making, but directly return 

control commands to the instrument. Operationalized on the SPM and STEM machines, these 

methods can be used for rapid mapping of the structure-property relationships. This 

knowledge can further be used for the discovery of generative physical models such as 

microstructure evolution equations, free energy functionals and Hamiltonians, and learning 

processing mechanisms. By combining zero-shot [9] and predictive [10] ML models with insitu 

particle beam, heating, or other processing, it is possible to learn materials responses and 

impart desired metastable states. These models are especially well suited to discovery 

scenarios, where they can reveal latent features to scientists, informing synthesis or 

degradation mechanisms.  

  

These approaches create new opportunities for materials discovery. The last 20 years have 

seen exponential growth of the theoretical predictive capability for crystalline materials and 

small molecules. The last 5 years have seen the exponential growth in the capability to 

accelerate materials synthesis via laboratory robotics and microfluidic synthesis. However, the 
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lesson of the past two decades is that scaling computation or synthesis individually by many 

orders of magnitude is insufficient to expedite materials discovery. Rather, the key is 

accelerating the feedback loop between theory and hypothesis making, experiment planning, 

synthesis, and characterization with subsequent update of theoretical models. Currently, 

characterization is the bottleneck – while synthesis can be scaled to 1000s compositions per 

day, the sequential structural, functional, and chemical probing outside of fast 

optical/photoluminescent methods still require hours and days. Closing these characterization 

loops requires scaling down the probing volume and reducing measurement times, tasks 

ideally matched to microscopy capabilities. Here, microscopy offers the natural tool for 

exploration of multidimensional composition and processing spaces via strong (i.e. matching 

target macroscopic functionalities) and weak proxies [7]. There is also an opportunity to 

leverage ML-based adaptive sampling and intelligently select modalities based on uncertainty 

metrics, shortcutting the time to discovery.  

  

A fundamentally new space of opportunities for materials discovery emerges based on 

controlled interventions in microscopy. In SPM, these include local polarization switching and 

electrochemical reactions that can now be studied at the time- and length scale well outside 

of conventional characterization methods, but very close to the intrinsic length scales of these 

phenomena. For electron microscopy, unique opportunities are the result of the electron 

beam’s power to break local chemical bonds, enabling controlled fabrication of atomic defects 

[10], beam controlled atomic motion, and building homo-and heteroatomic artificial 

molecules atom by atom [8]. The rapid exploration of materials synthesis and degradation 

pathways at spatial, chemical, and temporal scales commensurate with fundamental physical 

interactions is now more viable than ever before.    

  

Incorporation of ML methods both in real time and post-acquisition data analysis offers the 

compelling case to greatly increase the efficiency of instrument utilization by orders of 

magnitude and close the materials characterization gap, ushering the new era of materials 

and physics discovery and atomic fabrication.   

  

3. Beyond Crystallinity and Throughput: AI for Working Interfaces in Energy Conversion  

Technologies  

 

The urgency with which mankind needs to accomplish the transition to a sustainable energy 

economy dictates a drastic acceleration of established research and development cycles 

toward ever improved energy conversion devices like solar cells, catalysts, electrolyzers or 

batteries. With respect to materials discovery much prospect to this end is seen in datacentric 

approaches, which harness the powerful algorithms of machine learning (ML) or artificial 

intelligence (AI). In many areas of materials science, corresponding techniques ranging from 

high-throughput screening to inverse design are already most successfully employed to search 

the vast materials spaces for promising candidates at unprecedented efficiency [11]. The 

discovery is thereby often conducted entirely in silico, exploiting the predictive quality of first-

principles computational data.   
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Unfortunately, such developments are at present still largely stalled for the energy conversion 

context as the functionality of corresponding devices is generally limited by interfacial 

problems and interfacial data is much more difficult to come by than the bulk data that suffices 

for many other application areas. This relates to the involved (experimental or computational) 

costs for the generation of such data, but even more so to the lack of bestpractice protocols 

to do this reliably and reproducibly. A crucial component here is the strong structural, 

compositional and morphological evolution that the interfaces in energy conversion devices 

undergo operando [12]. These working surfaces or interfaces are thus anything but simple 

truncations or ideal junctions of known bulk materials, respectively. Instead, they extend over 

a finite width, and exhibit novel purely interface-stabilized phases with often a low degree of 

crystalline order. For the experimental data generation, this operando evolution dictates not 

only stringent protocols for the initial synthesis, but a seamless and exhaustive documentation 

of the entire history of environmental operation conditions to which the interfaces were 

subject to. As this is rarely reached, data is not comparable and interoperable, preventing a 

community-wide build-up of large-scale data bases. At the same time, the operando evolution 

also precludes the generation of pertinent first-principles data. There are essentially no 

established operando-aware descriptors, and even if there were, there are in general no 

established structural models for working interfaces that could be used to compute them.  

  

In this situation, there are two major strands in which AI and ML is presently employed toward 

an accelerated discovery. On the computational side, data-centric approaches are used to gain 

a deeper mechanistic understanding into working interfaces, with the long-term goal to use 

this insight to formulate operando-aware descriptors that could then be used for an efficient 

exploration of materials spaces [13]. A dominant development to this end is ML surrogate 

models, and there in particular ML interatomic potentials (MLIPs), which allow to generate 

first-principles quality data at orders of magnitude reduced computational costs. Appropriate 

for the data-scarce regime, the MLIP training is thereby done in agile active learning loops, 

with automated workflows being developed that ideally fully interlace this with the actual 

simulations to ensure consistent reliability [14]. In cutting-edge studies, the unprecedented 

capabilities are presently used to conduct the simulations in much larger simulation cells 

(therefore also allowing to address disorder) or perform significantly increased and therewith 

powerful samplings.   

  

On the experimental side, AI and ML is increasingly employed to reach a deeper analysis of 

(operando) characterization data, either to also reach an improved mechanistic understanding 

or to identify structure and correlations in the data that would enable improved workflows 

(proxy experiments, multi-fidelity experiments, …). Notably, AI and ML is employed within 

emerging self-driving laboratories (SDLs). Here they complement lab automation and robotics 

to reach higher throughputs, but foremost they take over the experiment planning. SDLs 

operate in active-learning loops, in which data from executed experiments is fed back into the 

ML model to refine it and design subsequent experiments. Current methodological frontiers 

in employed Bayesian optimization or adaptive Design of Experiment approaches concern 

significant or varying noise levels (e.g. in case of multi-fidelity measurements), the design of 

larger numbers of data points (to meet batch-type operation in increasingly parallelized 
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workflows), or agility to either autonomously adapt the shape and dimensions of the search 

spaces across loops or react to corresponding changes imposed by human scientists [15].  

  

4. Accessing photoinduced reaction dynamics on surfaces with neural networks  

  

Laser-induced reactions at surfaces are particularly interesting because this kind of excitation 

mechanism can increase significantly the reaction probability with respect to ordinary thermal 

activation and, importantly, even open new reaction channels. Still, despite the impressive 

technical advances, experiments alone cannot fully determine with atomistic space and time 

resolution all the elementary steps involved in the reaction as well as the properties 

determining each of these steps. It is at this point that molecular-dynamics simulations 

become crucial to dissect the reaction dynamics.   

 

Modelling the ultrafast photo-induced dynamics and reactivity of adsorbates on metals 

requires including the effect of the laser-excited electrons and also the effect of the 

concomitantly excited surface lattice. All these features can be effectively achieved by solving 

Langevin equations of motion, in which the coupling of each adsorbate and surface atom 

nuclei to the excited electrons is modelled in terms of electronic friction and stochastic forces 

that depend on the time-dependent electronic temperature that characterizes the excited 

Fermi-Dirac distribution, while the rest of interactions are described with the adiabatic 

potential energy surface (PES) that must account for all the system degrees of freedom. In 

spite of the apparent simplicity of the model, such simulations are highly demanding. Low 

energy molecules/atoms are particularly sensitive to energy differences of tens of meV that 

they experience in the proximity of a solid surface. And this sensitivity is even amplified when 

measuring, for instance, photoinduced desorption and reactivity probabilities and final-state 

distributions of the scattered gas species, such as, kinetic energies, scattering angles, and 

rovibrational quantum state distributions to cite some. Thus, any reliable description of 

gas/surface interactions requires the knowledge of the corresponding accurate first-principles 

multidimensional PES. First-principles molecular dynamics with electronic friction and 

thermostats (Te,Tl)-AIMDEF, which calculate on-the-fly the adiabatic forces with density-

functional theory (DFT) [16,17], do enable such a complex modelling [18], but, unfortunately, 

these simulations come with a very large computational expense that severely limits any 

statistical analysis of the reaction and, also, it restricts the simulation time to just a few 

picoseconds that might be insufficient to guarantee well-converged reaction yields.   

  

In the last years, the use of neural network (NN)-generated multidimensional PESs and, in 

particular, the use of atomistic neural networks (AtNNs), is becoming the accurate alternative 

to first-principles molecular dynamics studies of diverse gas-surface reactions [19, 20]. Aside 

AtNN methods, the newer message passing neural network potentials, which are also 

discussed in forthcoming sections, are certainly promising in terms of accuracy and efficiency 

when using the capabilities of GPUs. However, it must be emphasized that the requirements 

imposed to a NN-PES capable of describing photoinduced reactions are even more demanding 

than those required in usual elementary gas-surface processes. A reliable NN-PES must be 

able to model large and out-of-phase movements of multiple and different adsorbates and 

also surface atoms and it must describe accurately the very distinct and changing adsorbate 
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coverages that may exist during the photoinduced dynamics because of desorption events. 

This means that it is necessary to assure a precise description of both adsorbate-substrate and 

interadsorbate interactions under very different and changing conditions, including local 

variations in the number of neighbor adsorbates and strong lattice distortions, since the lattice 

temperature may vary rapidly in the range of tens to thousands Kelvin.   

  

The AtNN-like embedded atom neural network (EANN) method, which uses descriptors 

inspired in the embedded-atom electron density, demonstrates to be impressively accurate 

and flexible to account for all these requirements [21]. EANN PESs allowed us to reproduce 

and understand the experimental strong coverage dependence of CO phodesorption in Pd(111) 

[22], the large branching ratio between CO photo-desorption and CO photo-oxidation in 

Ru(0001) [23], and reveal the dynamical nature of the CO physisorption well that so far was 

only found in XPS experiments. But there are additional open questions that we can now think 

in treating by exploiting NN capabilities. Besides the general challenges faced in gas/surface 

dynamics [19, 20], specific challenges for photoinduced surface chemistry are related to 

performing nonadiabatic dynamics, either by advancing in orbital-based electronic friction 

coefficients adapted to the highly dynamic surface or even more challenging by developing 

excited state NN-PESs that could contribute to clarify the role on the initial nonthermal 

distribution of excited states.  

 

5. Data-driven advances in modelling and understanding amorphous materials  

 

Machine learning has transformed atomic-scale materials modelling: rather than building 

simplified models of reality, we can now describe “the real thing” in increasingly accurate 

simulations [24]. Machine-learned interatomic potentials (MLIPs) are trained to reproduce 

quantum-mechanical energy and force data for this very purpose. In the domain of inorganic 

materials, MLIPs are typically based on density-functional theory (DFT) ground-truth data; 

once they have been fitted and properly validated, they therefore enable very-large-scale 

molecular-dynamics (MD) simulations of bulk and nanostructured materials, all while 

retaining DFT-like accuracy. MLIPs have evolved from specialised tools to increasingly widely 

available (and visibly popular) simulation methods, and their development has been 

documented in numerous review articles [19, 25]. The architectures used to train MLIPs have 

been advanced over many years and, thanks to these efforts, have now reached impressive 

accuracy. There are still many future research directions: among them are improved strategies 

for dataset construction, and for MLIPs that can be distilled for downstream tasks [26].  

  

Looking from the development of MLIPs onwards to their (current and expected) impact on 

materials chemistry research, MLIPs are particularly promising tools in the area of amorphous 

materials—non-crystalline solids, whose complex atomic structures and structure–property 

relationships are now increasingly exploited for practical applications. Indeed, amorphous 

materials are of growing interest for energy storage, computing, catalysis, and many other 

fields (see Ref. [27] and references therein). Accordingly, amorphous materials are a frontier 

research challenge in computational materials design, and MLIPs are well placed to help to 

address this challenge [27].  
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A recent ML-driven study of graphene oxide (GO) exemplifies several aspects related to MLIPs 

and their applications to disordered and amorphous materials [28]. Formally, GO is a sheet of 

graphene modified by the presence of various functional groups (say, hydroxyl, carbonyl, and 

so on). In laboratory experiments, this modification is achieved using chemical reactions; in 

simulations, one can now quickly construct atomistic structural models over a wide-ranging 

parameter space of compositions and functional groups, and yet only the subsequent 

comparison with experiment will ultimately validate a given structural model. The study in Ref. 

[28] takes a two-step approach: first, exploring structures with ML-accelerated first-principles 

molecular dynamics; second, using a graph-neural-network architecture for fitting increasingly 

accurate MLIPs that iteratively “learn” about 2D extended and subsequently about 1D edge 

structures—details and methodological references may be found in Ref. [28]. With the final 

MLIP model available, MD simulations were carried out, exploring the gradual thermal 

reduction of a GO sheet.  

  

ML-driven simulations have already begun to have a major impact in materials chemistry and 

related fields. In the future, together with other emerging AI/ML approaches, they might 

enable the discovery and design of amorphous functional materials for a variety of practical 

applications [27].  

 

6. Foundation models for atomistic materials chemistry  

 

Density-functional theory (DFT) and its associated methods have become the standard toolkit 

of computational materials science and also to a large extent computational chemistry. As 

such, DFT constitutes the pinnacle of the Dirac programme of first-principles modelling [29]: 

start with the fundamental equations of quantum mechanics that describe the electrons and 

atomic nuclei (the latter represented as point charges to an exceedingly good approximation), 

and derive the consequences for the behaviour of crystals, molecules, currents, etc. The 

resulting sequence of approximations over the past ~ 50 years have enabled the description 

of known - and prediction of new material properties and underpins our understanding of the 

material world at the microscopic scale.   

  

The computational cost and scaling of DFT in practice limits is general usefulness to the 

treatment of hundreds of atoms and picoseconds of time scale. While these limitations are 

being challenged and push all the time by the progress in computational hardware and also 

algorithmic efficiency, but the extension of first-principles modelling to significantly larger 

length scales require a change in the modelling framework. Just as DFT eliminates the degrees 

of freedom inherent in the full many-body wave function and just retains the one-particle 

operator corresponding to the electron density, we can go further and eliminate electronic 

degrees of freedom altogether by writing the total energy as a function of just the atomic 

coordinates:  a force field. This function is very complicated, but advances in parametrising 

functions using a very large number (typically millions) of parameters based on fits to a large 

amount of data (widely known as machine learning) has enabled useful approximations that 
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allow the simulation of tens of thousands of atoms for millions of time steps, i.e. nanometers 

of material for nanoseconds.   

  

The past decade or so has seen incredible progress, and was spent mostly understanding how 

to build datasets for fitting ML force fields for particular systems, how achieve the accuracy 

that is required for the model to be usefully predictive of interesting properties [25]. Indeed 

even just characterising the relationship between the “pointwise” accuracy of the potential 

energy of a force field to the error in its prediction of any particular material property is highly 

nontrivial, and turns out to be critical for success. Simulations of phase transitions both under 

equilibrium and nonequilibrium conditions, heterogeneous catalysis, study of diffusion and 

spatiotemporal correlation are now routinely possible for complex materials.   

  

Just very recently it was discovered that when the training set is diverse enough, a force field 

can be made that covers most of periodic table, and despite only having been fitted to DFT 

calculations of small inorganic periodic crystals, is capable of running stable molecular 

dynamics on essentially any chemical system [30]. Such extreme generalisation goes 

somewhat counter to the conventional wisdom in machine learning research, which has made 

tremendous progress recently by using ever larger data sets. There is currently little 

understanding of what gives rise to such generalisation, but it raises the tantalising possibility 

of a universal force field. There is no doubt that further accuracy for a wide range of systems 

will be gained by training on large databases, and the construction of numerically consistent 

DFT data is currently the limiting factor.                

  

  

7. Machine learning electrochemistry  

 

The accurate description of redox reactions from the perspective of first-principles calculations 

still represents a challenge. Standard density-functional theory (DFT) approximations to the 

exchange-correlation functionals suffers from the so-called selfinteraction errors (SIE), leading 

to an unphysical delocalization of electrons and thereby limiting its ability to accurately study 

processes where changes in oxidation states are critical. Hybrid functionals, and even more 

extended Hubbard functionals (DFT+U+V) can provide a successful solution to this challenge 

[31]. As recently shown, DFT+U+V provides a robust framework to mitigate SIE in materials 

with strongly localized d or f electrons, especially for systems where the electronic localization 

occurs alongside with substantial hybridization.  Recently, it has been shown how the use of 

DFT+U+V along with first-principles molecular dynamics (FPMD) is capable to follow the 

adiabatic evolution of oxidation states over time in representative cathode materials for Li-ion 

batteries [32]. In addition, this opens the door to incorporating the concept of redox-aware 

into machine-learned potentials. Starting from the physical rationale that atoms with different 

oxidation states behave like distinct species, it has been shown that a neural-network training 

that considers atoms with different oxidation states (obtained through DFT+U+V FPMD) as 

distinct species can identify the correct ground state and pattern of oxidation states for the 

redox elements present [32]. This can be achieved through a combinatorial search for the 

lowest-energy configuration, among all possible patterns, and is shown to recover correctly 
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the DFT+U+V ground state. This brings the time-scale and length-scale advantages of machine-

learned potentials to central technological applications (e.g., rechargeable batteries), which 

require the correct description of redox states.  

The predictive accuracy of DFT+U+V heavily depends on the precise determination of the 

onsite U and inter-site V Hubbard parameters, which describe localization and hybridization, 

respectively. While in the simplest cases these parameters could be obtained through 

semiempirical tuning (but then negating the predictive power of the approach, and the 

capability to deal with complex and very diverse local environments, that require atom-

specific U and V), unbiased predictions identify Hubbard parameters self-consistently through 

linearresponse calculations, particularly efficient when density-functional perturbation theory 

(DFPT) is deployed. This approach has now been fully automated [33], enabling 

highthroughput calculations of Hubbard parameters that can provide extensive datasets for 

further investigations.   

In particular, it becomes even possible to build a machine learning model to predict these 

bypassing the DFPT step. For example, the machine learning method of Ref. [34] has been 

recently devised to this goal. The model is based on equivariant neural networks, and uses 

electronic occupation matrices as descriptors, capturing the electronic structure, local 

chemical environment, and oxidation states of the system in question. The model significantly 

speeds up the prediction of Hubbard parameters, while approaching the accuracy of DFPT. 

The model uses two DFT-based calculations: first, a DFT+U+V ground-state calculation with 

initial guesses for U and V (which can be set to zero) to obtain atomic occupation matrices; 

second, a structural optimization using the model-predicted self-consistent (SC) Hubbard 

parameters to obtain the SC structural-electronic ground state. Furthermore, thanks to its 

strong transferability, it enables accelerated materials discovery and design via high-

throughput calculations, with relevance for various technological applications.  

  

Another key topic in computational electrochemistry is the accurate calculation of molecular 

ion solvation energies, crucial for controlling electrochemical reactions. In particular, this 

information is essential for the characterization of of relative phase stability in different 

environments, and thus of major interest to advanced materials and manufacturing. First and 

foremost, first-principles accuracy is needed to determine the solvation energies of ions and 

small molecules in arbitrary solvents. The neural network potentials discussed in the previous 

Sections make these calculations viable, and overcome the computational bottlenecks of 

FPMD. A recently developed neural network-based workflow [35] has shown the capability to 

compute ion solvation energies for alkaline(-earth) cations with chemical accuracy. Future 

directions will involve developing active learning schemes to automate the calculations’ 

workflows. Moreover, electrostatic interactions that have been treated directly through the 

neural network for the short range and analytically for the long range might need to take into 

account the complex nature of the electrochemical potential across all length scales.  

  

  

8. Machine learning for molecular sensing  

 

Machine learning is fundamentally transforming molecular sensing, particularly in gas sensing 

field, by revolutionizing the screening of sensing materials and the enhancement of sensor 
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performance through advanced signal processing techniques. By integrating machine learning 

with theoretical tools (e.g., density-functional theory, DFT), researchers have unlocked a 

powerful methodology for designing selective gas sensing materials and decoding complex 

sensor signals. This synergistic approach accelerates material discovery and sensor 

optimization, paving the way for molecular sensing devices that are more sensitive, selective, 

and reliable.  

  

Traditional methods for designing and screening gas sensing materials rely on trial-and-error 

experimentation, which is often labor-intensive and time-consuming. By contrast, machine 

learning, when combined with computational tools, facilitates the efficient prediction of 

material properties, significantly streamlining the process. For instance, machine learning 

models can correlate key material descriptors, such as adsorption energy, surface reactivity 

and electronic properties, with their responses to specific gases. This enables rapid screening 

and selection of materials without the need for exhaustive experimental validation. For 

instance, in a recent study, machine learning combined with DFT successfully predicted the 

sensitivity of Cs3Cu2I5 to hydrogen sulfide, achieving a remarkable 92% accuracy in predictions, 

which were later validated experimentally [36]. Beyond accelerating material discovery, this 

integration also provides valuable mechanism insights into gas adsorption and sensitivity, 

enabling a deeper understanding of the materials’ functionality. Similarly, for metal oxide 

materials-based sensors, machine learning models have been instrumental in identifying 

critical descriptors that dictate their sensing capabilities, guiding the targeted selection of 

materials for diverse applications ranging from industrial safety to environmental monitoring 

[37].  

  

Following the selection of sensing materials, machine learning continues to play a pivotal role 

in optimizing sensor performance by fine tuning critical parameters such as sensitivity, 

selectivity, and response time. It’s reported that machine learning techniques have been 

applied to gas-sensing platforms based on copper phthalocyanine functionalized graphene, 

enhancing their ability to detect trace amounts of gases like ammonia and phosphine [38]. By 

analysing the sensor’s responses, machine learning improves accuracy and specificity, even in 

complex gas mixtures. Furthermore, machine learning has proven invaluable in the design of 

sensor arrays capable of detecting multiple gases simultaneously. Algorithms are employed to 

analyse interactions between sensor elements and their collective responses, enabling the 

identification of the most effective configurations. This optimization is particularly critical for 

applications like air quality monitoring, where the simultaneous and accurate identification of 

various pollutants is essential.  

  

In molecular sensing, interpreting gas sensing signals is crucial. Machine learning techniques 

are extensively utilized in signal processing to extract meaningful features from raw sensor 

data while minimizing noise, a common challenge in real-world sensing environments. For 

instance, machine learning has been used in electronic noses to extract transient kinetic 

features from sensor response profiles. These features act as distinct fingerprints of odorants, 

enabling the accurate classification of volatile organic compounds and addressing one of the 

field’s primary challenges [39].  
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Despite its transformative potential, the application of machine learning in molecular sensing 

faces several challenges, including improving the interpretability of machine learning models, 

reducing dependence on large datasets, and enhancing the real-time performance of sensing 

systems, as well as energy-consuming. Overcoming these hurdles will require continued 

advancements in machine learning techniques, such as the integration of deep learning and 

reinforcement learning, development of more accurate adaptive sensing systems, as well as 

development of brain-inspired neuromorphic computing system [40]. Future developments 

could enable gas sensors that not only detect and classify gases but also predict environmental 

changes or potential hazards. Such advancements will pave the way for smart, autonomous 

sensing systems across diverse domains, including healthcare, environmental monitoring, and 

industrial safety.  

  

To sum up, the integration of machine learning with theoretical tools is revolutionizing the 

design and optimization of molecular sensors. By expediting material discovery, refining 

sensor configurations, and enhancing signal processing, machine learning stands at the 

forefront of developing next-generation molecular sensing technologies. These innovations 

promise enhanced sensitivity, selectivity, and performance, ensuring their pivotal role in 

addressing the challenges of modern sensing applications.  

  

  

9. Refining Molecular Characterization for Robust Machine-guided Corrosion Inhibitor 
Discovery   

 

A particularly urgent and industrially significant case where machine learning is being applied 

to discover effective molecular materials is in the discovery of corrosion inhibitors. Such 

inhibitors would be embedded in the primer of a paint system or used in initial metal 

passivation. Traditionally inhibitors have been based on chromate or other toxic compounds 

that are being banned by legislation worldwide. Small hetero-cyclic compounds are a 

promising alterative, yet to determine the exact molecular structure with high-efficient 

corrosion inhibition from tens of thousands of possibilities remains a challenge.  Various 

methods including high-throughput experimentation and computational modelling have been 

developed to select or design the optimal molecular structure. A very promising approach is 

the use of inverse design, in which high throughput experiments defining electrochemical 

performance and computation methods deriving inhibitor characteristics and attributes are 

linked by a machine learning (ML) method to define the molecular attributes essentially 

important for inhibition performance. These critical features are then used to search 

molecular databases and select promising candidate inhibitors that are then subject to testing 

for verification.   

Early work was able to use quantitative structural activity relationships (QSAR) methods based 

on a neural network approach to obtain reasonable models of the features controlling 

inhibition [41]. However, while these models represent successfully the existing dataset, 

further generalization ability was still to be enhanced. Challenges may come in twofold: (i) the 

relevance of molecular characterization and attribute definitions; and (ii) the deficiency of 

computationally/experimentally generated datasets. Since then, large programs have been 

undertaken, where the databases were significantly enhanced, and great care was cast to 
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ensure that both experimental and computational data were accurate and reproducible. 

Further the molecular attributes were refined to better represent molecular interactions with 

solvent and metal surfaces. Ranges of statistical and QSAR techniques have been used to 

define the relationships between the molecular attributes and electrochemical performance. 

These models demonstrated an enhanced ability to represent existing data, but their 

predictive ability could still be enhanced [42]. Recent experimental work reveals the 

complexity of corrosion inhibition process, of which peak performance (both 

electrochemically and mechanically) was reached by short-term inhibitor treatment, but 

subsequential voids appeared within the inhibitor film with time expansion [43]. Molecular-

dynamics models indicated that the inhibitor film may be subject to electroporation where 

charge at the metal surface causes the inhibitors to clump together allowing water to again 

reach the metal surface [44].   

Thus, it is evident that additional factors involved in the inhibitor adsorption control the overall 

performance and stability of inhibitor layer, entailing a deeper understanding of inhibitor layer 

formation and lifetime. A recent review [45] highlighted the limitations of previous models: 

inadequate or no representation of solvent, lack of potential effects and relatively small 

models. New methodology was proposed based on a combined quantum 

mechanics/molecular mechanics/non equilibrium greens function (QM/MM/NEGF) approach.  

This approach enables the simulation of larger models that include both solvent and voltage 

effects. The system has been applied to the inhibition study of both copper and zinc surfaces 

by 2- mercaptobenzimidazole (MBI). A major result of the study is that, when MBI binds to 

the surface, a major electronic re-alignment across the inhibitor assembly rearranges the 

dipole moment at the exterior of the molecule. The traditional theory of inhibitors is that they 

form a barrier to both water and solvents against charge transfer. This study proposed that 

while MBI acts as an effective barrier against water, it cannot be regarded as a charge barrier. 

In fact, charge realignment and the formation of the dipole will have a profound influence on 

the deposition of the subsequent inhibitor layer. The relevant molecular attributes 

contributing to the dynamics of corrosion inhibition processes are potentially important 

descriptors that were previously overlooked for ML development. As highlighted in our studies, 

the molecular attributes that can represent these processes are quite different from those 

that reflect surface bonding and thus our datasets used in ML approaches need significant 

redesign.   

  

10. Exploring New Frontiers in Inverse Materials Design through Graph Neural Networks 

and Large Language Models   

Finding new materials with suitable properties has been a challenging task due to the 

computational and experimental costs. AI/ML techniques have been successfully used for 

both forward (structure to property) and inverse (property to structure) tasks in materials 

design [46]. Inverse design approaches can surpass traditional funnel-like materials screening 

methods and facilitate the computational discovery of next-generation materials. Since no 

explicitly available physics-based methods exist for inverse design tasks, AI/ML is an obvious 

choice.  
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To accomplish inverse materials design tasks, we require the following: 1) a well-curated and 

diverse dataset, 2) an AI/ML model and architecture that can establish a mapping between 

the properties of materials and material structures, and 3) suitable metrics and a 

benchmarking strategy to guide the design process. While there are numerous material 

properties—such as electronic bandgap, bulk modulus, refractive index, etc., or their 

combinations—that can be used as target properties, we can start with a specific property, 

such as superconducting transition temperature (Tc). Superconductors are one of the most 

celebrated classes of materials in materials science, but there are very few such materials 

known experimentally. As mentioned above, we require a dataset for superconductors. While 

many materials databases exist, they lacked superconducting properties until JARVIS-DFT.  

JARVIS-DFT [47] consists of more than 80,000 materials and millions of material properties, 

with around 1,000 superconducting materials in the dataset. Note that predicting Tc is 

computationally expensive compared to other properties, such as formation energy, when 

using DFT. As the next step for inverse design, we require AI/ML methods suitable for this task. 

There are a variety of AI/ML methods, such as fingerprint-based traditional methods, deep 

learning techniques like convolutional neural networks (CNNs), graph neural networks (GNNs), 

and generative pre-trained transformers (GPTs).  

GNNs, in particular, have been successful recently for atomistic materials design tasks. In these 

models, atoms are represented as nodes, bonds as edges, and angles as edges of the 

corresponding line graphs, for instance. GNNs such as Atomistic Line Graph Neural Networks 

(ALIGNN), combined with diffusion models like the Crystal Diffusion Variational Autoencoder 

(CDVAE), have enabled the generation of superconducting atomic structures [48]. The dataset 

was split into training and testing sets, and the metric for performance was the interatomic 

distances between target and predicted structures in the test dataset. After model 

development, more than 50 candidate superconductors were computationally discovered and 

later characterized with density-functional theory (DFT) to validate AI predictions. Another AI 

approach used was GPT models.  

In GPT models such as AtomGPT, both the atomic structure and the target property can be 

represented as text [49]. These texts are converted into tokens, and GPT models establish the 

relationship between the atomic structure and property/prompt tokens. Such GPT models 

have shown remarkable promise for both forward and inverse materials design tasks. For the 

superconducting dataset, we followed similar train-test splits as in GNN methods and 

measured performance based on the interatomic bond distance comparison metric between 

target and predicted materials in the test dataset. We found that GPT-based models surpass 

GNN models in terms of this metric, and new candidate superconductors were 

computationally discovered and later validated with DFT. Additionally, GPT models are much 

faster and easier to implement than GNN models. These comparisons are hosted on the 

JARVIS-Leaderboard [50] open-source platform to enhance reproducibility, transparency, and 

allow others to contribute their models as well.  

 

11. Property directed generative design of inorganic materials  
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Property-directed generative design presents a unique opportunity in modern materials 

discovery, shifting from large-scale data-driven screening to precise, generative approaches 

aimed at discovering novel compounds with tailored properties. Recent advancements in 

computational science for materials discovery have made significant progress in addressing 

one of the key challenges in crystal structure prediction (CSP) — identifying stable and 

metastable structures efficiently [51]. Traditional CSP methods, such as evolutionary 

algorithms and particle swarm optimization, however, are computationally expensive and 

limited in their ability to explore vast chemical spaces. Generative models, by contrast, provide 

a promising alternative by efficiently targeting structures that are near ground-state 

configurations when trained on existing data. These generative frameworks also enable 

inverse design, where the desired targets guide the generation of materials, making them 

particularly valuable for property-directed generative design.   

  

However, a major challenge in applying generative models is in ensuring that generated 

structures obey the symmetry and periodicity essential for physical plausibility. Symmetry 

considerations are fundamental for determining key properties of inorganic materials, 

including electronic band structures, optical behaviour, and mechanical strength. We 

summarize some recent frameworks, such as DiffSCP++ [52], CrystalFormer [53], WyCryst [54], 

MatterGen [55], and PGCGM [56], which have demonstrated the importance of integrating 

symmetry constraints into a generative framework to ensure the physical plausibility of 

generated materials. These models utilize a variety of AI-driven models, such as symmetry-

based representations, diffusion-based methods, and graph neural networks, to generate 

stable and diverse crystal structures that satisfy specific property requirements. By embedding 

symmetry into the generative process, these frameworks enhance the efficiency of materials 

discovery, reduce reliance on trial-and-error experimentation, and open new avenues for the 

design of materials with applications in energy, electronics, and catalysis.  

  

Among these models, WyCryst enables symmetry-constrained structure generation through 

three key components: a Wyckoff position-based representation to enforce symmetry 

constraints, a property-directed variational autoencoder (PVAE) for generating novel crystal 

structures, and an automated density-functional theory (DFT) workflow for validating the 

stability and properties of the generated materials. By embedding symmetry constraints, 

WyCryst efficiently generates materials that adhere to space group symmetries while meeting 

desired property criteria. Similarly, DiffSCP++ employs a symmetry-constrained diffusion 

model to refine atom types, positions, and lattice parameters, ensuring that the generated 

structures maintain realistic symmetry and periodicity. This approach enhances the diversity 

and stability of generated materials, opening new possibilities for discovering synthesizable 

inorganic compounds. CrystalFormer employs a transformer-based architecture to generate 

crystal structures by predicting symmetry-inequivalent Wyckoff positions in the unit cell 

ensuring compliance with space group symmetries: this produces thermodynamically stable 

materials with various symmetries. CrystalFormer is also capable of performing 

propertyguided exploration with probabilistic modelling, facilitating the discovery of inorganic 

compounds with targeted properties. MatterGen employs an SE(3) equivariant diffusion 

approach to generate crystal structures by iteratively refining random initial configurations 

until they conform to a targeted distribution. MatterGen, as a base pre-trained model, can be 

Page 17 of 31 AUTHOR SUBMITTED MANUSCRIPT - JPMATER-101248.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



finetuned towards stability or functional properties, facilitating the discovery of materials 

tailored to specific applications. The PGCGM (Physics Guided Crystal Generative Model) 

achieves symmetry-based generative design by incorporating physics-oriented losses related 

to physics and space group symmetry. The model training emphasizes thermodynamic 

stability ensuring the generation of low energy compounds. PGCGM also enables the 

generation of crystal structures with specific space group symmetries, allowing further 

discovery of functional materials.  

  

In conclusion, property-directed generative design frameworks represent a significant 

advancement in the field of materials science. By embedding symmetry-based constrains into 

the generative process, these models enhance the validity and stability of predicted materials, 

thereby accelerating the discovery of inorganic compounds with desired properties. A key 

bottleneck is the generation of experimental or high-quality computational data to train such 

the generative models. This approach, however promises not only a streamlined materials 

design process but also new avenues for the development of advanced materials tailored for 

specific applications. The synergy between AI models and physics-based property-directed 

design holds immense promise for revolutionizing the way materials are discovered and 

optimized for real-world use.  

  

12. Physics based machine learning for materials and compound space  

  

The virtual navigation of chemical compound space has been significantly constrained by the 

prohibitive computational demand associated with numerically solving approximations to 

Schrödinger’s equation with satisfying accuracy for an exponentially growing number of 

possible systems. Over the last decade, considerable progress has been realized thanks to the 

application of statistical techniques commonly referred to as artificial intelligence, as recently 

documented in an entire issue in Chemical Reviews dedicated to machine learning at the 

atomic scale [57]. Due to the colossal number of potential and costly training compounds, the 

central inquiry has been on how to improve training efficiency — as quantified by scaling laws 

(or learning curves). This question has persisted ever since it was first demonstrated that 

machine learning models of quantum properties can be applied throughout chemical 

compound space, i.e. for out-of-sample systems (not part of training), with prediction errors 

that decay systematically with training set size [58]. Subsequent applications have highlighted 

the promise of machine learning for the atomistic sciences by systematically surpassing the 

accuracy of hybrid density-functional theory (DFT) approximations for various quantum 

properties [59], estimating formation energies for millions of quaternary crystals [60] or 

reaching the accuracy of explicitly correlated electronic structure theory methods through 

Δlearning [61], or multi-level learning [62]. Further breakthroughs in training efficiency, 

scalability, and transferability were achieved by virtue of similarity-based query aware models, 

trained on the fly, and decomposition of training and testing systems into fragments, based 

on Atoms-in-Molecule-ONs (AMONs) [63].  

Most recent contributions indicate that meaningful combinations of these techniques are 

possible, often via intimate combinations with DFT. As such, DFT has assumed an outstanding 

role for the use of artificial intelligence in chemistry and materials not only for merely 
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generating data sets for training and testing but also for informing superior machine learning 

model architectures and workflows [64]. Specific examples include the combination of 

Δlearning and AMONs to enable quantum Monte Carlo level of accuracy [65], similarity-based 

learning and ridge regression identifying potentially superconducting candidates [66], or 

adaptive hybrid DFT which reaches superior accuracies when it comes to singlet-triplet 

spingaps or other quantum observables [67].   

The work mentioned only represents a small glimpse of recent activities in the entire and 

rapidly growing field. Overall, remarkable progress has been made towards the generic goal 

of reaching EAST, i.e. Efficiency, Accuracy, Scalability, and Transferability [64]. Remaining 

challenges include the generation of more and sufficient data that is universally representative 

not only for minima but also for barriers, foundational machine learning models that can be 

used to estimate any quantum mechanical observable in any electronic state, and the 

possibility to account for multi-reference, as well as nuclear quantum and relativistic effects.  

  

13. Language models for many-body physics  

  

Now is an exciting time for research on quantum physics due to the opportunities and 

significant advances in the application of machine learning (ML) and artificial intelligence (AI) 

to fundamental problems in physics, chemistry, and materials science. In particular, the 

transformative power of language models like Recurrent Neural Networks (RNNs) and 

Transformers [68], originally designed for natural language processing (NLP), has opened a 

new frontier across a wide array of technologically and scientifically relevant disciplines, 

including classical and quantum many-body physics.  

  

Although historically these models originally demonstrated breakthrough performances in NLP, 

such as in ChatGPT [68], they have in principle little to do with ”language” itself. From a 

broader perspective, these models constitute powerful statistical modelling and information 

processing machines that can process a wide array of data types exhibiting correlations of 

different nature not limited to language. Tokens traditionally understood as pieces of words 

or phrases could also represent physical or chemical degrees of freedom, namely, spins in a 

lattice, lattice occupation numbers, atomic coordinates, or generally any sequence of inputs 

that are statistically mutually dependent. By expanding the token universe to encompass 

states from any other degrees of freedom relevant to a physical system, large language models 

(LLMs) can allow physicists to simulate many-body interactions with unprecedented precision 

and efficiency.  

  

While the origin of these token streams is disparate, the statistical correlations in datasets 

commonly used in NLP, computer vision, and other popular tasks in ML, display striking 

similarities with data from physical systems. Key similarities include symmetries, high 

dimensionality, and correlation functions. For example, spatial symmetries in present in 

natural datasets and classical and quantum systems simultaneously improve the sample 

complexity and learnability of models in computer vision as well as enriches our 

understanding of physical systems in classical and quantum mechanics. The behaviour of the 

correlations among the constituent elements in the token streams in computer vision and NLP 

display strikingly analogous behaviour to classical and quantum systems in thermal 
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equilibrium near a critical point [69]. These commonalities make it natural to attempt to use 

these models to study classical and quantum many body systems and are an important reason 

behind their rise and success in quantum many-body physics research.  

  

Recent research has begun to capitalize on this potential. Techniques such as RNN wave 

functions [70] and language model-based quantum state tomography offer flexible and 

powerful representations of quantum states than conventional approaches. These studies 

have been extended to the task of finding ground states of quantum many-body systems, e.g., 

ground states of frustrated magnets, Rydberg atoms arrays, and fermionic systems, as well as 

to simulate the time evolution of quantum states and to solve combinatorial optimization 

problems [71]. Quantum chemistry, a field crucial for understanding molecular interactions 

and reactions, has also benefited from these advances. Transformer-based models can predict 

molecular ground state energies with comparable accuracy to traditional methods. Such 

advancements hold immense promise for rapid simulations in quantum chemistry, offering a 

pathway toward scalable tools that handle large basis sets and dense electron correlations 

that are challenging for standard quantum chemistry methods.  

  

One potential application of LLMs in physics is the simulation of many-body fermion systems, 

such as those encountered in Rydberg arrays, exotic material phases, or molecules. Models 

such as ”RydbergGPT” [72] could enable simulations, potentially influencing quantum 

computing and materials science in the long term. By offering a scalable and adaptable 

approach to many-body physics, LLMs could present a complementary method to state-ofthe-

art algorithms such as Quantum Monte Carlo and Density Matrix Renormalization Group, 

especially when dealing with high-dimensional frustrated or out-of-equilibrium systems.  

  

Looking ahead, the development of efficient and environmentally conscious LLMs is critical. 

The computational costs of training these models using Graphical Processing Units (GPUs) are 

significant, and reducing the environmental impact of large-scale simulations remains a 

pressing concern even in physics simulations based on language models. Innovations in model 

architecture design could help address this issue, aligning with the broader push for 

sustainable computing. In conclusion, language models can become versatile tools for 

scientists by bridging the gap between language processing and physical simulations, 

impacting fields beyond NLP [71]. As research in this space advances, LLMs may catalyze 

breakthroughs across many-body physics, quantum chemistry, and beyond, unlocking a new 

era of data- and physics-driven, efficient, and scalable many-body systems simulations.  

  

 

14. Variational autoencoders-enabled high-fidelity reconstruction and effective anomaly 

detection in time-series data  

 

Robust modelling of multi-channel biological time-series data, such as EEG, across different 

individuals is crucial in numerous applications. Most often, identifying common patterns 

(biomarkers) is as relevant as distinguishing them from individual behaviors (fingerprints). 

However, achieving accurate modelling involves tackling three primary challenges: 
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intersubject variability, intra-subject variability, and ensuring data quality and fairness, 

including the automatic detection of artifacts [73].  

We used the well-known BCI dataset 2a, a very popular EEG dataset collected from nine 

subjects performing motor imagery of hand and feet movements, to test both classification 

and reconstruction using various deep learning models [74]. First, vEEGNet-ver1 served as the 

baseline model upon which we built subsequent versions. vEEGNet-ver1 is a variational 

autoencoder with the encoder inspired by the popular EEGNet architecture, with three main 

convolutional layers. The decoder is the mirrored version of the encoder. By enhancing its 

encoder architecture, we developed vEEGNet-ver2, which offered improved performance over 

the first version in terms of reconstruction. Then, we decided to focus on the reconstruction 

task, in line with previous literature indicating a trade-off between classification and 

reconstruction learning abilities [75]. This led to the creation of vEEGNetver3, which targets a 

single task, i.e., the reconstruction. In vEEGNet-ver3, we defined the reconstruction loss as the 

(soft) dynamic time warping distance between the original and the reconstructed time-series. 

This approach significantly improved the model's performance, suggesting the importance of 

concentrating on specific tasks to achieve better results. Finally, by employing a hierarchical 

variational autoencoder architecture [76], we transformed vEEGNet-ver3 into the hvEEGNet 

model. This advanced architecture demonstrated highfidelity reconstruction performance and 

provides three distinct latent representations, extracted from the three latent spaces of the 

model. As the reconstruction performance on the dataset 2a were very high, we tested 

hvEEGNet as an automatic artifact detector, enabling the identification of artifacts that had 

not been previously detected in the wellknown public dataset.  

One of the key insights from our work is the crucial role of domain knowledge that allowed us 

to recognize that poor reconstruction results were linked to acquisition problems, such as 

signal saturation, or physiological artefacts, such as eye blinking. Ensuring high data quality is 

essential for the successful and reliable learning of machine learning models. Without 

highquality data, even the most advanced algorithms can produce misleading or suboptimal 

results.   

Moreover, the latent representations extracted by hvEEGNet can be further investigated to 

develop new physics-informed smaller and more effective latent space structures [77]. Such 

advancements could pave the way for more robust and informative deep learning models for 

time-series modelling and anomaly detection. By improving the effectiveness and 

interpretability of latent representations, future research could address the challenge of 

distinguishing common patterns from individual ones and better quantify inter- and 

intrasubject variability. Also, improved interpretability will enable a higher degree of 

interaction with domain experts, who can help drive the development of deep learning 

models tailored to their research and clinical questions.  

The significance of this research extends beyond this immediate application, as the above 

challenges are common to other domains where complex living systems are under 

investigation. Moreover, hvEEGNet is a versatile model which can be adjusted to other types 

time-series data, with different dynamics, and different applications.  
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15. Multiscale Materials Science: Tasks, Challenges, and Cross-Domain Synergies  

 

Materials science is a field driven by its multiscale nature, where phenomena at vastly 
different spatial and temporal scales interact to define the properties and behaviors of 
materials. From atomic vibrations that dictate thermal conductivity to macroscopic structures 
determining mechanical strength, understanding and predicting material behavior requires 
bridging these scales.  
  

Traditionally, physics has provided a robust set of mathematical tools to address multiscale 
problems. Methods such as renormalization groups, effective field theories, and closure 
coordinates have been used to study specific properties like critical points or ground states. 
While these approaches have been immensely successful in understanding phase transitions 
and other fundamental phenomena, they were typically designed to address narrowly 
focused problems.  
  

Today, the scope of problems in materials science has expanded significantly. Researchers are 
not only interested in understanding ground states or critical phenomena but also in exploring 
broader challenges like finding meta-stable states, analyzing mechanical properties under 
various conditions, and even generating entirely new structures.  
Addressing these challenges requires a paradigm shift from traditional analytical methods to 
new data-driven approaches. Machine learning and artificial intelligence (AI) have emerged 
as powerful tools to augment classical methods, enabling scientists to model, predict, and 
design materials across multiple scales with unprecedented efficiency.  
  

This shift toward data-driven methodologies is transforming materials science, creating 
opportunities to solve problems that were previously intractable and broadening the field’s 
potential impact across domains.  
  

Integrated Multiscale Tasks in Materials Science  

In materials science, tasks such as property prediction, conditional structure generation, 
automated synthesis, and physical law discovery are inherently multiscale. Each of these tasks 
requires understanding the interplay between small-scale phenomena and large-scale 
outcomes.  
  

Predicting material properties often involves connecting atomistic interactions to macroscopic 
behaviors. For example, multiscale deep learning models can predict the elastic properties of 
woven composites by analyzing data from simulations at the microstructural level [78]. These 
models provide valuable insights into how small changes at the microscale influence the 
overall performance of a material.  
  

Generating structures with specific properties is a complex inverse problem. Advanced 
generative models, like those used to predict domain boundaries in potassium sodium niobate 
thin films, can reveal previously unobserved structural motifs that emerge from simple local 
rules [79]. This work highlights how structural complexity arises naturally from underlying 
physical principles.  
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Automating synthesis processes accelerates material discovery by optimizing experimental 
conditions. For instance, the LeapFrog framework combines adaptive mesh refinement with 
machine learning to simulate the solidification of alloys, offering insights into how synthesis 
parameters affect microstructure formation [80].  
  

Discovering physical laws and principles requires connecting diverse scales of phenomena. 
Compression theory, for example, identifies relevant degrees of freedom in complex systems 
like quasicrystals, uncovering new critical behaviors that were previously hidden [81, 82].  
  

Universality of Multiscale Methods  

One of the most exciting aspects of multiscale methods is their universality. Once developed 
for a specific domain, these methods can often be applied to entirely different fields. For 
example, techniques for coarse-graining molecular dynamics with graph neural networks 
reduce computational costs while generating transferable representations applicable across 
molecular systems [83]. Similarly, data-driven models used to study DNA methylation patterns 
have uncovered thermodynamic variables that govern healthspan and lifespan across species, 
demonstrating the potential for cross-domain applications [84].  
  

By leveraging the universality of multiscale approaches, we can accelerate discoveries not only 

in materials science but also in fields like biology, chemistry, and even social systems.  

  

The Core Challenge: Balancing Detail and Holism  

A central challenge in multiscale modeling is determining the appropriate level of detail. Too 
much detail can make models computationally infeasible, while too little can lead to 

inaccuracies. For example, the FEANN  framework balances accuracy and computational 
efficiency by using physics-constrained neural networks to model fibre-reinforced composites 
[85].  
  

When a single level of detail is insufficient, integrating multiple scales into a cohesive 
framework becomes essential. Flow-matching, a novel method for coarse-grained molecular 
dynamics, combines generative modeling with force-matching to efficiently capture key 
interactions across scales [86]. Such approaches demonstrate how multiscale frameworks can 
provide a holistic view without overwhelming computational resources.  
  

Outlook: Toward a Unified Multiscale Ecosystem  

The future of materials science lies in creating a unified ecosystem that integrates multiscale 
simulations, AI, and experimental data. Graph-enhanced deep material networks, for example, 
unify the modeling of diverse microstructures, enabling predictions across families of 
materials [87]. These tools not only improve accuracy but also pave the way for entirely new 
material designs.  
  

Furthermore, integrating theoretical principles with data-driven models offers powerful 
opportunities. For instance, a platform based on the Onsager principle creates reduced 
thermodynamic coordinates for stochastic systems, allowing for a more profound 
understanding of complex material behaviours [88].  
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By developing interoperable, scalable, and transferable tools, we can accelerate innovation, 

enabling faster discoveries and broader applications of multiscale methodologies.  

  

Multiscale materials science stands at the intersection of computation, experimentation, and 
theory. From predicting properties to discovering universal principles, multiscale methods 
allow us to tackle challenges across domains. By balancing detail and holism and leveraging 
the universality of these approaches, we can push the boundaries of what is possible, not only 
in materials science but in many other fields as well.  
  

Conclusion and perspective  

  

Digitalization of materials is a strategic action in the frame of emerging twin green & digital 

transition which aim at a more sustainable and resilient world economy. New digitalization 

solutions are needed covering the whole materials value chain and interconnecting all phases 

of the materials life cycle, from materials design and development, production, optimal usage, 

to maintenance and to re-use, and recycling. Principally these efforts can be broadly 

categorized into two domains: “digital twins” and materials models in a very broad sense, 

provided digital representations of materials in the context of their application independent 

of a specific measurement. Secondly, curated dataspaces provide access to experimental data 

that forms the basis for the generation of model-based digital representations.  

  

Digital twins and materials models need to extrapolate beyond the limited number of available 

data points. Given the vast dimension of the materials space this problem will not be solved 

by high-throughput experiments. For this reason, one of the major challenges of developing 

accurate and functional modelling of innovative advanced materials (IAM) is to reach the 

accuracy of first-principles approaches over a very large volume of systems.  Moreover, a 

generic modelling procedure at an experimental scale where material imperfections such as 

defects, disordered chemical composition, rough interfaces, etc, play a major role, is hardly 

possible with conventional first-principles techniques. The development of machine-learned 

(ML) strategies that allow obtaining atomistic models from a large dataset of small and 

accurate first-principles calculations could enable achieving unprecedented time and length 

scales. The elaboration of novel types of datasets required to train ML models is also of major 

concern, but while open-access material databases offer valuable information on thousands 

of crystalline materials, they overlook the nature and impact of the variety of possible atomic 

imperfections as usually observed in experiments. Finally, a substantial challenge persists in 

extracting meaningful physical insights from the vast amount of data (raw images and spectra) 

generated during experimental analysis. The use of AI-driven methodologies associated with 

(S)TEM data analysis for instance could boost the automation of experiments and data analysis 

of IAMs.  

  

It is therefore urgent to develop AI and ML based models embedded into workflows that can 

accelerate the design of IAMs, and optimize their compositions and structures for enhancing 

their application performances. Efforts need to be focused on the generalization of AI-driven 

ML techniques to cope with realistic modelling of IAMs, as well as on the development of 
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workflows connecting the generation of atomistic models to the simulation of their electronic, 

transport, thermal and optical properties. Critically, the impact of disorder, interface 

symmetries or chemical composition on their physical properties (electronic, optical, magnetic, 

etc), in limiting the use of IAMs for optimization of devices and achieving device metrics’ upper 

limits need to be considered. Additionally, AI-enhanced characterization workflow should be 

developed to facilitate breakthroughs in data analysis methodologies of IAMs.  

  

Developing physically informed AI-based models can allow material scientists, engineers, and 

companies to determine the physical properties (electronic, optical, transport, magnetic...) of 

IAMs in significantly less time than through conventional modelling, hence accelerating the 

path to innovation and new discoveries. These approaches will boost the exploration of 

complex structures relevant to energy, electronic, photonic quantum and composites 

applications. Moreover, properly trained models will enable to quickly test multiple 

experimental conditions with minimal modelling effort, which will help conventional fab and 

lab metrologist to access a comprehensive analysis of intricate architectures and compositions 

of IAMs, serving as a solution to the lack of sufficient statistical sampling for understanding 

performance variability among individual devices.   

  

The transition from traditional data-centric approaches to more sophisticated foundation 

models is essential to address these challenges. Foundation models, which generalize across 

diverse datasets and tasks, will help in scaling up the modelling of IAMs and extracting more 

actionable insights from data. Thus, it is increasingly important to develop AI- and ML-based 

models embedded in workflows that not only accelerate the design of IAMs but also optimize 

their compositions and structures for enhanced application performance. These models 

should be capable of handling a broader range of tasks, from the generation of atomistic 

models to the simulation of electronic, transport, thermal, and optical properties. Moreover, 

the impact of material disorder, interface symmetries, and chemical composition on the 

physical properties (e.g., electronic, optical, magnetic) must be considered, especially when 

aiming to push the limits of device performance and metrics.  

  

Materials data spaces (such as Material digital, https://www.materialdigital.de/, FAIRmat 

https://www.fairmat-nfdi.eu/fairmat/, DIADEM, PSDI, CAPeX or NIMS-MPDF) [89] constitute 

an asset for establishing a Materials Commons infrastructure in which federated data 

repositories with trusted data management, access, and exchange are provided. Building on 

the experience of several national, European and international initiatives, harmonized 

semantic data documentation according to FAIR principles should be developed to support 

interoperability and AI-readiness of produced IAM data. EU and National initiatives provided 

a huge and ever-increasing body of materials data that needs to be curated and made 

accessible to ensure maximal exploitation. To this end the data must be findable and 

accessible independent of its original format, i.e. semantically. Here the development of core 

and domain-specific ontologies opens significant long-term opportunities. While sharing the 

meta-data is uncritical for many stakeholders, the efforts to organize data-spaces must take 

into account the need for data-provenance for certain datasets. Given the enormous increase 

of the power of foundational models, the data needed for training emerges as the bottleneck 

and the potential competitive advantage for Europe.  
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Beyond modelling and data sharing, the role of platforms that facilitate not only the exchange 

of materials data but also the processing, automated analysis, and on-the-fly literature 

analysis is crucial. Such platforms would enable seamless integration of various stages of data 

flow, from acquisition to interpretation, while simultaneously providing relevant, up-to-date 

research knowledge that can inform and hasten the experimental or computational task at 

hand. This functionality would enable the acceleration of innovation in IAMs by ensuring that 

researchers have access to both empirical data and the latest theoretical insights. AIenhanced 

characterization workflows are particularly important for automating and refining data 

analysis techniques, allowing for rapid testing of experimental conditions with minimal 

manual effort. This will help experimental researchers access comprehensive analyses of 

complex IAM architectures and compositions, solving the problem of insufficient statistical 

sampling and enabling a better understanding of performance variability across breadth of 

domains of material science.  

  

Combined efforts in the digitalization of materials and the validation of predictive AI models 

for materials enable the establishment of materials acceleration platforms, or a self-driving 

lab have an enormous potential to revolutionize and accelerate the development of IAM both 

in industrial and academic settings [89]. In that sense the emerging initiatives in Europe and 

elsewhere stand as an opportunity but also great challenge and will demand sustained efforts 

and funding for the decade to come.  
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