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Machine-learned force fields have transformed the atomistic modelling of materials 
by enabling simulations of ab initio quality on unprecedented time and length scales. 
However, they are currently limited by: (i) the significant computational and human 
effort that must go into development and validation of potentials for each particular 
system of interest; and (ii) a general lack of transferability from one chemical sys- 
tem to the next. Here, using the state-of-the-art MACE architecture we introduce 
a single general-purpose ML model, trained on a public database of 150k inorganic 
crystals, that is capable of running stable molecular dynamics on molecules and ma- 
terials. We demonstrate the power of the MACE-MP-0 model — and its qualitative 
and at times quantitative accuracy — on a diverse set problems in the physical sci- 
ences, including the properties of solids, liquids, gases, and chemical reactions. The 
model can be applied out of the box and as a starting or “foundation model” for any 
atomistic system of interest and is thus a step towards democratising the revolution 
of ML force fields by lowering the barriers to entry. 

 
 
1 Introduction 
Atomic-scale simulation based on density functional theory (DFT) is an enormously successful component of 
materials modeling (1–7). However, the computational cost of such ab initio methods, which use electronic 
structure theory directly, becomes prohibitive for many important cases (e.g., amorphous solids, condensed 
phase liquids, nanostructured materials, and more). Although fast analytical models in the form of empir- 
ical interatomic potentials (or, force fields) have existed for decades, with varying levels of accuracy and 
applicability (8), they generally fail to achieve DFT accuracy, particularly when describing reactive events 
and phase transitions. As a result, they have been unable to displace DFT for many applications. More 
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recently, machine learning (ML)-based interatomic potentials, custom-trained for a particular material or 
system, have improved the achievable accuracy considerably, albeit at a moderate increase in cost relative 
to empirical force fields (9–17). Yet, such custom-trained potentials require significant computational and 
human effort for the generation of DFT reference data, as well as model training and validation (18). 

 

MATERIALS PROJECT 

 
 

 
 

Figure 1: A foundation model for materials modelling. Trained only on Materials Project data (19) 
which consists primarily of inorganic crystals and is skewed heavily towards oxides, MACE-MP-0 is capable 
of molecular dynamics simulation across a wide variety of chemistries in the solid, liquid and gaseous phases. 
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(PES) across all possible chemical and structural spaces without incurring the high computational cost of 
ab initio electronic structure methods. By enabling robust, accurate molecular dynamics (MD) simulations 
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for any material, such a potential would enable immediate study of arbitrary systems at a scale currently 
inaccessible even via the largest available computational resources. (Here, by robustness we mean that 
the trajectory should not irreversibly end up in unphysical configurations, a frequently observed behaviour 
for current-generation ML potentials, especially in long multi-nanosecond simulations (20).) Particularly 
desirable applications would include complex chemical reaction processes in both solid and liquid phases, at 
solid-fluid interfaces, or under pressure. 

A key advance towards this goal was made by the MEGNet (21) model, which provided property pre- 
diction for inorganic crystals, and was trained on minimum energy configurations in the Materials Project 
(MP) (19) that includes most elements of the periodic table (89) and electronic structure calculations us- 
ing the Perdew-Burke-Enzerhof (PBE) exchange-correlation functional (22). More recently, models using 
equivariant graph neural network architectures with the capacity to compute forces were also trained on 
MP-based datasets, including M3GNet (23) and CHGNet (24), which were both trained on snapshots from 
DFT relaxations of the MP structures, with the CHGNet using the MPtrj dataset introduced at the same 
time (24). The ALIGNN-FF model (25) was also trained on a database of inorganic crystals, JARVIS- 
DFT (26), that covers 89 elements and uses the optB88vdW exchange-correlation functional (27). The 
proprietary GNoME (28) (NequIP architecture (16)) model also starts from MP, but uses a complex active 
learning workflow to generate and train on a dataset of inorganic crystals nearly two orders of magnitude 
larger than MPtrj. The above models were created primarily for the purpose of “materials discovery”, i.e. 
predicting thermodynamic stability of hypothetical inorganic crystals. In addition, they were capable of 
doing molecular dynamics for such crystals, and indeed both CHGNet and GNoME were used to study alkali 
metal ion diffusion in battery materials. To date, the most general and transferable force field for molecular 
dynamics is the PFP model (29) (TeaNet architecture (30)), also proprietary (including its training set that 
covers 45 elements and is significantly larger than MP and also covers molecules and surfaces). PFP was 
demonstrated for running simulations on solid state ionic conductors, and a molecular adsorption and a 
heterogeneous catalysis example. There are also ML force fields specialized for organic molecules (with a 
much more limited number of elements) such as the ANI (and later AimNET) series of models (31–33), and 
also recently for metal alloys (34). However, there has yet to be a comprehensive demonstration that a single 
ML potential can describe solid, liquid, and gaseous systems of materials and molecules across the periodic 
table and well beyond the distribution of the underlying training set. 

Here, we present MACE-MP-0, a new interatomic potential using the MACE architecture (35) that is 
trained just on the MPtrj dataset, and demonstrate its capabilities on an unprecedented range of qualitative 
and quantitative examples drawn from computational chemistry and materials science, including running 
stable molecular dynamics simulations in a wide variety of chemistries, predicting phonon spectra, calculating 
activation energies for point defect and dislocation motion, simulating solvent mixtures, combusting hydrogen 
gas, modelling a complete rechargeable battery cell, and much more; several of these are illustrated in Fig. 1. 
We find that this pre-trained foundation model shows remarkable out-of-distribution performance. 

The MACE architecture was designed to keep only what appear to be essential components of equivariant 
graph neural networks (36): the element embedding with tensor decomposition (37) and the higher order 
equivariant messages constructed through the tensor product operation. Its unique innovations are that (i) 
it uses high body order equivariant features in each layer (4-body in the present case), and consequently 
only two layers of message passing are sufficient; (ii) it is only mildly nonlinear, as the only nonlinear 
activations are in the radial basis and the final readout layer, hence its classification as a graph tensor 
network. Its computational cost for evaluation is broadly in line with other graph neural networks, presently 
allowing simulations of around a thousand atoms for nanoseconds per day on a single GPU (depending on 
atomic density, hardware, floating point precision, size of model, etc., see section A.30 in the Supplementary 
Information (SI) for details, and when run in parallel using domain decomposition, weak scaling at 0.1 ns/day 
is perfect up to 32,000 atoms and 64 GPUs on a dense metallic alloy.) The training cost of the model used 
throughout this paper was about 2,600 GPU hours. 

In the following, we highlight three classes of application examples: solid and liquid water, heterogeneous 
catalysis, and metal–organic frameworks. The SI contains additional examples in 30 separate sections demon- 
strating the wide-ranging transferability of MACE-MP-0 in predicting properties and dynamic processes of 
both molecules and materials, as well as benchmarks and graphical exploration of the training data. 
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2 Applications 
2.1 Water and aqueous systems 
Water is ubiquitous in nature and technology and has long been a major focus of computational work. 
Driven by the delicate balance between directional hydrogen bonding and primarily non-directional van der 
Waals interactions, aqueous systems remain a challenge for simulations (43). For example, the study of 
proton transfer in water, a fundamental process characterized by the continuous breaking and forming of 
covalent bonds, has long required using ab initio molecular dynamics for detailed atomistic insight (44–46). 
We demonstrate in this section how MACE-MP-0 describes various aqueous systems. 

We start by examining the structure of liquid water and hexagonal ice (ice Ih). The oxygen–oxygen radial 
distribution function, depicted in Fig. 2a, shows reasonable agreement with reference simulations. The infra- 
red vibrational spectra of both phases, shown in panel Fig. 2b, align well with experimental observations, 
albeit with a notable red shift in the stretching vibrations indicating a softer description of the O H bond 
as is well-known for PBE-D3 (43). In panel Fig. 2d, the relative stabilities of 12 ice polymorphs with respect 
to ice Ih, used in a recent benchmark (47), show excellent agreement with respect to PBE-D3 with a MAE of 
around 4 meV. Proton defects (OH– and H3O+) in ice Ih and liquid water were simulated, revealing robust 
descriptions of proton transfer, as shown in Fig. 2c. The proton transfer barrier for hydroxide is higher than 
for hydronium in liquid water, consistent with experimental diffusion trends. 

Next, we evaluate MACE-MP-0 for describing solid–liquid interfaces. First, we focus on NaCl in water 
in two cases: a NaCl(001) interface in contact with water and a small nanocrystal surrounded by water. 
Simulations were performed at 400 K to promote dissolution, and compared to simulations with a custom- 
trained ML potential based on revPBE-D3 from Ref. (42). As expected, for the flat surface the model 
predicts no dissolution events on the timescale of the simulation (0.5 ns). Meanwhile, for the nanocrystal 
surrounded by water, MACE-MP-0 captures a dissolution mechanism resembling that in Ref. (42) as shown 
in Fig. 2e. The dissolution proceeds via a crumbling mechanism, where an initial steady loss of ions is followed 
by the rapid disintegration of the crystal. As ions dissolve from the crystal, they are hydrated by water. 
The dissolution process is stochastic, leading to an intrinsic variation between independent simulations. The 
final structure of the dissolved ions in water also displays the expected orientation of the water molecules 
with respect to the ions. 

We then model the SiO2/water interface, Fig. 2f, revealing the expected density modulations in the first 
few contact layers. As before, the liquid phase is found to be overstructured, a common characteristic of the 
PBE functional (43) used by MP and therefore by MACE-MP-0. SiO2 is known for its dissociative water 
adsorption, which we observe in our simulations. Deprotonation of water is evidenced by the shoulder in the 
water density plot and can also be seen in the inset of a snapshot of this system in Fig. 2f. 

Finally, we investigate nanoconfined water in graphene-like nanocapillaries (48, 49), which exhibits dra- 
matically different properties from bulk water. MACE-MP-0 proved robust in simulating nanoconfined water. 
Stable simulations were conducted at 4 GPa and 600 K, conditions under which a superionic phase with high 
ionic conductivity was previously predicted (50) using a custom-trained ML potential. The MACE-MP-0 
model accurately captured the dynamical characteristics of this phase, including extensive proton transfer 
on the ten pico-seconds timescale, as illustrated in the inset of Fig. 2g. Comparing the free energy profile 
associated with the O – H distance [Fig. 2g] against the PBE-D3 reference, MACE-MP-0 shows an overall 
good description, albeit underestimating the proton transfer barrier by 1-2 kcal/mol. This tendency towards 
autoprotolysis is consistent with the soft description of the O – H bond observed in bulk phases. 

 
2.2 Catalysis 
The study of heterogeneous (57–59) and electrocatalysis (60–62) is another major area where DFT excels. 
It provides atomistic insight into the underlying reaction mechanisms and enables the prediction of the 
properties of new catalytic materials, (63) including reaction barriers and rates, in turn used to predict 
turnover frequencies (64). The latter is essential for the computational discovery of new solid catalysts for 
overcoming the dependence on rare and toxic elements and improving the efficiency of critical processes for 
energy conversion. However, the computational cost of DFT is a serious impediment. Empirical interatomic 
potentials are typically inadequate for catalysis applications as they rarely describe chemical reactions accu- 
rately. Machine learning has already had strong impact in computational catalysis (54,65,66), e.g., enabling 
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Figure 2: MACE-MP-0 performance for aqueous systems. (a) Oxygen–oxygen radial distribution 
function for bulk water (experimental result from Ref. (38)) and ice Ih. (b) Experimental (Ref. (39, 40)) 
and computed infrared spectra of bulk water and ice Ih. (c) Free energy profiles as a function of the proton 
transfer barrier for a hydroxide ion and excess proton in ice Ih at 250 K and bulk water at 330 K. Snapshots 
at the top show the simulation cells. (d) Performance of MACE-MP-0 (blue squares) on the relative lattice 
energies of the DMC-ICE13 dataset, compared to the reference method, PBE-D3 (41) (black circles). (e) 
Dissolution of a 4 × 4 × 4 unit-cell NaCl nanocrystal in water at 400 K, monitoring the extent of dissolution 
over the simulation time via the crystal size. Performance of the MACE-MP-0 (blue line) is compared 
to a neural network potential (42) trained explicitly to capture NaCl dissolution (black dashed line). (f) 
SiO2/water interface simulation showing density modulations and dissociative water adsorption, with an 
inset highlighting the deprotonation of water as indicated by a shoulder in the water density plot. H3O+ 
defects in the liquid are highlighted in green. (g) The free energy profile of the O – H distance in the superionic 
phase of monolayer water in a confining potential. The inset shows a snapshot of the monolayer superionic 
phase with lines indicating the 50 ps-long trajectory of randomly chosen hydrogen atoms with “×” indicating 
their initial positions. 
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fast screening of materials spaces (67–69), and free energy calculations beyond the harmonic approxima- 
tion (54, 70, 71). However, developing such accurate potentials from scratch still requires significant human 
and computational effort. We now test the performance of MACE-MP-0 for different catalysis applications 
and summarise the results in Fig. 3. 

Potential–pH Pourbaix diagrams are central to understanding the aqueous stability of solid materials 
in an electrochemical environment (72, 73), and thus allow predicting the active phase of an electrocatalyst 
under given conditions. Within the computational hydrogen electrode (CHE) framework (74), these diagrams 
can be computed without an explicit electrostatic model. Figure 3a–b show the MACE-MP-0+D3-calculated 
Pourbaix diagrams for bulk CuO and a Pt(111) surface. The Pourbaix diagrams are constructed via the 
formalism described in (75, 76), where only the energies of the relevant solids are calculated while corrected 
experimentally-derived energies are used for the aqueous ions. In both cases, the MACE-MP-0 results show 
remarkably good agreement with DFT (51), predicting the correct sequence of stable phases (with the 
exception of a very narrow region of Cu2O stability) and corresponding pH and potential ranges. While this 
accuracy may be expected for the bulk CuO system that is represented in the training set, the electrosorption 
at the Pt(111) surface is also well described despite being out of domain. 

In Fig. 3c, adsorption energy scaling relations between atomic and hydrogenated adsorbates on transi- 
tion-metal surfaces are shown for MACE-MP-0+D3 and PBE+D3 (see SI for more examples). Such scaling 
relations are central to understanding the activity of heterogeneous catalysts (77, 78). MACE-MP-0+D3 
captures these trends well, and the slopes of the linear fits are in reasonable agreement with DFT (e.g. 
0.6 for O vs. OH, compared to 0.64 for PBE+D3). Importantly, the lack of correlation between O and C 
adsorption energies is also captured, indicating that the model is not merely sorting metals according to 
their general reactivity (52, 79). Figure 3d–e show reaction energy profiles for CO oxidation on Cu (53) and 
a key step in CO2 conversion to methanol on In2O3 (54, 80), respectively. While these are not quantitatively 
accurate when compared to DFT, MACE-MP-0+D3 nevertheless captures the location and magnitude of the 
barriers surprisingly well. Figure 3f illustrates how MACE-MP-0 generalizes to out-of-domain catalysis tasks 
from bulk training configurations. To this end, the high-dimensional MACE-MP-0 features are projected to 
2D using a Uniform Manifold Approximation Projection (UMAP) (55), with local atomic environments in 
the training set shown in blue and those found in the In2O3 transition path shown in red. Representative 
environments with similar MACE-MP-0 features are highlighted, indicating that the internal representation 
of the atomic environments in the NEB configurations is similar to the representation of under-coordinated 
environments and metal–organic systems in the training set. 

While MACE-MP-0 is not always quantitatively accurate for the most challenging catalysis applications, 
its stability in MD and exploring reactive pathways is remarkable and provides a starting point for further 
optimisations. Relevant configurations or phase space regions thus identified may subsequently be validated 
either by first-principles calculations or serve to initiate active-learning for refining the model. Even at its 
current foundation level, MACE-MP-0 already allows a statistical sampling far beyond the present DFT- 
based state of the art which is still largely thermochemistry-centered, whereas MACE-MP-0 will pave the 
way for true kinetic modeling by explicit evaluations of reaction profiles and the reactive flux along them. 

 
2.3 Metal–organic frameworks 
Metal–organic frameworks (MOFs) are a class of nanoporous materials comprised of metal cations or clusters 
connected by organic linkers arranged in a periodic lattice (87). Due to their large surface areas, tunable 
building blocks, and permanent porosity, MOFs hold substantial promise for various applications, including 
but not limited to catalysis, energy storage, gas adsorption and separations, and optoelectronic devices (87). 
We tested our pre-trained model directly against version 14 of the Quantum MOF (QMOF) database, which 
contains DFT-computed properties at several levels of theory for 20,000+ MOFs and structurally related 
coordination polymers (81,82). MACE-MP-0 was not trained on any data from the QMOF database, making 
this a challenging test of its transferability to largely unseen chemistries. 

As shown in Fig. 4a, MACE-MP-0 performs very well in predicting the absolute energies of MOFs, 
achieving an MAE of 0.033 eV/atom despite the pronounced difference between the inorganic crystals of the 
MPtrj training set and the MOF structures that make up the QMOF database. This accuracy spans most of 
the periodic table, as demonstrated in Figure 4b. When the energy prediction is distributed on a per-atom 
basis, we note a strong elemental dependence of predicted energy error. The higher-than-average errors for 
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Figure 4: MACE-MP-0 applied to MOFs. (a) Comparison between MACE-MP-0 and DFT (PBE) 
energies on 20,375 relaxed structures taken from the QMOF database (81, 82). (b) Element-wise mean 
absolute error (MAE) of MACE-MP-0 predicted energies with respect to PBE energies from the QMOF 
database. The absolute energy error per atom of each structure is distributed over all constituent elements 
(see SI). (c) Mg-MOF-74 structure with chemisorbed CO2 optimized with MACE-MP-0. Color key: Mg 
(orange), O (red), C (brown), H (white). (d) Left: free energy landscape of CO2 in Mg-MOF-74. Middle: 
free energy landscape from Ref. (83) using a custom-trained DeePMD ML force field. Right: free energy 
landscape using the UFF classical force field (84) with DDEC6 charges (85) for the framework and TraPPE 
for CO2 (86). (e) Free energy maps of 91 hypothetical MOF-74 analogues, with the QMOF ID of the parent 
Mg-containing frameworks indicated at the bottom of each column and the transition metal to the left of 
each row. 
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certain elements (Mo, V, Gd, Yb etc.) are due to a difference in the chosen pseudopotentials between the 
MP and QMOF datasets (see SI 2.3). 

To validate the use of MACE-MP-0 for capturing dynamic processes, we investigate CO2 adsorption in 
a prototypical MOF known as Mg-MOF-74. The MOF-74 family, including the Mg-containing version, has 
been extensively studied for the selective adsorption of CO2 (88–90). Of particular note, the coordinatively 
unsaturated metal sites (91) of Mg-MOF-74 enable chemical bonding interactions between the metal and 
CO2 adsorbate (88) that cannot be captured from classical force fields alone. We directly compare the 
adsorption dynamics against the results presented in Ref. (92), which considered the same system using a 
custom-trained ML force field generated using DeePMD-Kit (83) and PBE-D3 calculations in CP2K (3). 

MACE-MP-0 accurately and efficiently captures the CO2 adsorption process in Mg-MOF-74. As shown in 
Fig. 4c, the CO2 adsorbate favorably binds to the Mg center in a tilted configuration that is in agreement with 
both experimental neutron diffraction data (89, 93) and the previous custom-trained ML model (92). The 
mean bond distance between the Mg center and CO2 adsorbate is predicted to be 2.38 Å from MACE-MP-0 
(Figure 35a), in close agreement with the experimental value of 2.27 Å (89) and the value of 2.23 Å from the 
custom ML model in Ref. (92). The mean Mg – O – C bond angle is predicted to be 133.7◦ from MACE-MP-0 
(Fig. 35a), substantially closer to the experimentally determined bond angle of 131◦ (89) than the 118.6◦ 
value from the ML model in Ref. (92). The projected density map for the CO2 adsorption site (Fig. 4b) 
is, again, in excellent agreement with prior work (92, 93) and shows how the adsorbed CO2 molecules are 
mobile but largely confined to the vicinity of the Mg binding site due to chemisorption. 

To showcase an example of how one might use MACE-MP-0 in a high-throughput setting, we considered 91 
hypothetical MOF-74 analogues derived from those in Ref. (94) based on 13 (out of 58) different frameworks 
and seven different metal cations (M) that have been used to synthesize M-MOF-74 (89). Figure 4e shows the 
resulting free energy maps, comprising over 160 ns of simulation altogether, displaying diverse and dynamic 
behaviour of the CO2 adsorbate across the range of hypothetical MOF-74 analogues. 

Given the nature of our foundation model, we anticipate many additional application areas where MACE- 
MP-0 (or one of its future variants) could be of value in the MOF field. Based on the CO2 adsorption example, 
we envision applications in capturing dynamic processes, particularly those that cannot be accurately mod- 
eled using classical force fields and are prohibitively expensive to carry out with ab initio MD given the large 
unit-cell size required to describe most MOFs. Foundation models are promising for modeling competitive 
multi-component physisorption and chemisorption processes, especially across many families of composition- 
ally different MOFs and combinations of gas mixtures, for which training a system-specific, on-the-fly active 
learning model would be expensive or even prohibitive. In addition to the compositional diversity relevant 
to high-throughput screening, not all MOFs can be described via a static picture and based on an ideal 
crystalline structure: in fact, there has been recent interest in liquid and amorphous MOFs (95, 96), and 
the dynamic behavior of crystalline frameworks (97) — such as in the so-called “flexible” and “breathing” 
MOFs — has been leveraged for highly selective separation processes (98). This dynamic behavior cannot 
be completely captured from static DFT calculations alone, and accurate and easily accessible interatomic 
potentials are expected to accelerate the modeling of spatio-temporal processes in future studies (99). 

 
2.4 Further applications and Supplementary Information 
In the Supplementary Information in 30 subsections, we provide further application examples. We also 
give the results of a comprehensive set of benchmarks, including the performance on calculating phonon 
dispersions, bulk and shear moduli of crystals, atomisation energies and lattice constants of elemental solids, 
the cohesive energies of the S66 set (100) of molecular dimers and the X23 set (101) of molecular crystals, 
the CRBH20 set (102) of reaction barrier heights, and the homonuclear diatomic binding curves. The full 
set of heteronuclear diatomic curves is provided in the Supplementary Materials. 

We also give more details on the training protocol, and a graphical exploration of the data, including 
histograms of energies, forces, stresses, magnetic moments, and element and composition counts. 
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3 Current limitations and future outlook 
The DFT-quality simulation and stable MD propagation for a wide range of materials across the periodic table 
that we have shown here are landmark achievements for a single machine-learned interatomic potential. Yet 
there are a number of limitations of the current version of the MACE-MP-0 model. The exchange-correlation 
functional used in the MPtrj dataset is PBE (22), which must be augmented with Hubbard U terms to 
improve electronic correlations for particular element combinations (introducing inconsistencies in the PES 
that must be compensated (6)), and dispersion corrections, such as D3 (41). Recent developments in DFT 
are beginning to supersede it by achieving improved accuracy at comparable computational cost (103, 104), 
and methods beyond DFT such as hybrid functionals (105) and the random phase approximation (106) 
improve upon this even further but at much larger computational cost. Refitting the model to a more 
modern functional is expected to increase its predictive power, and will reduce the need for system-dependent 
corrections such as the use of Hubbard U terms and dispersion. 

The MACE model that we used to fit the data does not contain explicit long range interactions (beyond 
the 12 Å receptive field afforded by two steps of message passing), nor does it take into account magnetic or 
spin degrees of freedom. Despite the success in describing many different chemistries demonstrated herein, 
there will be observables, particularly in the context of dilute solutions and at interfaces, that cannot be 
calculated with a short-range model. There are several approaches to incorporating explicit electrostatic 
interactions into ML models in the literature (107–110), as well as spin degrees of freedom (24, 111, 112). A 
subsequent version of our model will undoubtedly benefit from such an extension. 

Considering the results for the diverse systems shown in the SI, there are two broad areas where the 
model clearly needs improvement: (i) describing intermolecular interactions, (ii) high pressure simulations. 
While the overarching goal of MD stability is achieved for ambient conditions, for many systems there is 
room for improvement in a quantitative sense. In some cases, e.g. low pressure simulations of ethanol (sec- 
tion appendix A.16), these small quantitative deviations lead to qualitative errors by shifting an important 
phase transition’s temperature or pressure, thereby changing the equilibrium phase at ambient conditions. 
In other cases, namely atoms that approach each other at very close distances in random structure search 
(section appendix A.14) or high pressure hydrogen (section appendix A.21), the energy errors are large, and 
the simulations become trapped in anomalously low energy, unphysical geometries. These errors are not 
specific to certain systems, and both can be addressed straightforwardly by extending the existing training 
data to lower and higher pressures (113) for the former, and using repulsive pair potentials (114) for the 
latter. In most cases, it is not yet wise to solely rely on ML potentials for all chemical or physical predictions 
without further validation (115), and the same is true for MACE-MP-0. 

Several possible factors may be limiting the model’s accuracy: the size of the model in terms of number 
of free parameters and the limits this places on its expressivity, the total amount and type of configurations 
in the training set, or inconsistencies in the quantum-mechanically computed data labels. Exploration 
of possible improvements to the model and its training data is ongoing to determine which of these are 
responsible for current limitations. The results will determine in what ways the model and its improved 
versions will be used in the future. 

The most pessimistic, but we think unlikely, possibility is that using MACE-MP-0 as a foundation model 
that must be fine-tuned to give quantitative accuracy for specific systems will require very large amounts of 
data and/or training time, and that the pre-trained model will not provide a significant shortcut compared 
to training models from scratch. In this case, the ability of MACE-MP-0 to produce reasonable trajectories 
will still make it useful as an efficient source of configurations for system-specific fitting databases, perhaps 
augmented by further active learning. 

A more likely scenario is that the current model will at least be able to serve as a starting point that 
can be efficiently fine-tuned for any particular system. It remains to be seen how much additional data 
would be needed for such refinement, but based on previous experience we are optimistic; pre-training with 
cheaply generated data and subsequent fine-tuning has been shown to improve accuracy and stability of 
ML potentials (116), and transfer-learning approaches can enable such models to fit higher quality reference 
data (32). This type of refinement will definitely be required for systems where the level of theory that 
was used to calculate the currently used training dataset are considered to be inadequate. There is good 
evidence that reaching higher levels of electronic structure theory from a DFT baseline and beyond requires 
significantly less data than fitting to DFT itself (32, 117, 118) 
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Finally, we may find that adding only a moderate number of additional configurations computed with 
essentially the same methodology will be sufficient to achieve quantitative agreement with the target level 
of theory across the full range of chemistry and structure. If this turns out to be true, future versions of 
MACE-MP-0 may truly provide a universal model for carrying out material simulations. 
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4 Methods 
4.1 Model 
MACE All models trained in the paper use the MACE (35) architecture implemented in PyTorch (119) 
and employing the e3nn library (120). The MACE training and evaluation codes are distributed via GitHub 
under the MIT license. MACE is an equivariant message-passing graph tensor network where each layer 
encodes many-body information of atomic geometry. At each layer, many-body messages are formed using 
a linear combination of a tensor product basis (36, 37). This is constructed by taking tensor products of 
a sum of two-body permutation-invariant polynomials, expanded in a spherical basis. The final output is 
the energy contribution of each atom to the total potential energy. For a more detailed description of the 
architecture, see Refs. (35) and (121). 

 
Hyper-parameters All models referred to in this work use two MACE layers, a spherical expansion of 
up to lmax = 3, and 4-body messages in each layer (correlation order 3). All models use a 128-channel 
dimension for tensor decomposition. We use a radial cutoff of 6 Å and expand the interatomic distances into 
10 Bessel functions multiplied by a smooth polynomial cutoff function to construct radial features, in turn 
fed into a fully-connected feed-forward neural network with three hidden layers of 64 hidden units and SiLU 
non-linearities. We fit three different size models, which only differ by the maximal message equivariance, 
L = 0, 1, 2 for the small, medium and large models, respectively, and provide different compromises between 
computational cost and fitting accuracy. All application examples in this paper are run with the medium 
L = 1 model as it offers a good cost-accuracy trade-off. 

 
Normalization To ensure internal normalization of the weights, we divide the atomic basis in each layer 
by the average number of neighbors in the training dataset, as proposed in (36). This number is fixed at 
≈ 62. The node energy ϵa of atom a is shifted by the mean of the atomic energies. Therefore, the prediction 
of the energy for the whole structure is constructed as 
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where K denotes the total number of message passing layers and ϵ(k) is the energy of atom a at layer k. µ 
and σ are the mean atomic energies and the mean square of the atomic forces computed on the training set. 
The predicted forces and stresses are computed as derivatives of the total energy with respect to the atomic 
positions and the strain tensor, respectively. 

 
Training loss The models were trained using a weighted sum of Huber losses of energy, forces, and stress: 
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Êb ,
  

b , δE 
Nb 

b=1 
Na Na 

+ λF Nb  Na  3 
L⋆ 

( 
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where λE, λF , λσ are predetermined weights of energy (E), forces (F ), and stress (σ) losses, the symbols 
under a hat correspond to predicted values, and Nb and Na are the batch size and the number of atoms in 
each structure. In the last term involving the stress, εb and σb correspond to the strain and stress tensors, 
respectively. We used (λE, λF , λσ) = (1, 10, 100) and Huber deltas of δE = 0.01, δF = 0.01, δσ = 0.01. We 
use a conditional Huber loss L⋆ for forces, where the Huber delta δF is adaptive to the force magnitude 
on each atom. The Huber delta δF decreases step-wise by a factor from 1.0 to 0.1 as the atomic force 
increases from 0 to 300 eV/Å. For more details, see the section C.1 in th SI. 
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Optimization The models are trained with the AMSGrad (122) variant of Adam (123) with default 
parameters β1 = 0.9, β2 = 0.999, and ϵ = 10−8. We use a learning rate of 0.001 and a exponential 
moving average (EMA) learning scheduler with decaying factor of 0.995. We employ a gradient clipping of 
100. Models are trained for 200 epochs on 40–80 NVIDIA A100 GPUs across 10–20 nodes. Training the 
medium-sized model took approx. 2,600 GPU hours. 

 
Training data The MACE-MP-0 model was trained on the MPtrj dataset which was compiled origi- 
nally for CHGNet (24). This dataset consists of a large number of static calculations and structural op- 
timization trajectories from the Materials Project (MP) (19). These include approx. 1.5M configurations 
(roughly ten times the approx. 150k unique MP structures), mainly small periodic unit cells (90% under 70 
atoms) describing inorganic crystals with some molecular components. The DFT calculations use the PBE 
exchange-correlation functional with Hubbard U terms applied to some transition metal oxide systems, but 
no additional dispersion correction (124). 

Since the potential we fit calculates the energy based only on structural information, ideally we would 
like to use consistent electronic calculation parameters and the lowest energy electronic state for each con- 
figuration. One significant source of inconsistency is the application of Hubbard U , which is used in MP 
calculations only when O or F are present together with any of 8 transition metals (Co, Cr, Fe, Mn, Mo, 
Ni, V, W) (125). The application of U leads to a shift in energy correlated with the value of U , i.e. a few 
eV, not explicitly accounted for in our fit. Thus, energies from calculations using those 8 elements with 
and without O or F are inconsistent (in the sense that the energy along a continuous deformation path that 
removes the O or F atoms from around these metals would be discontinuous). The pre-trained CHGNet fit 
to MPtrj used energies corrected to account for the presence or absence of U (126). In our fit, this shift only 
occurs between structures with different compositions and for any given composition the energies should be 
consistent. As a result, we expect configurations that include local regions of these metals with very different 
O or F content, e.g. an interface between a metal and an oxide, may be poorly described. 

In addition, the current fitting database includes a variety of magnetic orders generated as part of a 
systematic search for the magnetic ground state (127), chosen from the full database only based on calculation 
type (“GGA Static” and “GGA Structure Optimization”) and energy-difference criteria (24). To quantify the 
effect of this additional and unaccounted-for degree of freedom, we classify the magnetic order associated 
with each calculation task into one of four categories: 1) no atomic magnetic moment listed, 2) moment 
converged to zero on all atoms, 3) converged to ferromagnetic order, and 4) converged to another magnetic 
order. Of the approx. 150k MP-IDs present, about 48k have more than one magnetic order present in the 
fitting database. In the vast majority of cases, this includes a calculation where the moments are unknown 
(i.e. not recorded) and a single other magnetic order, and we can hope that they are actually consistent. 
However, for 5186 MP-IDs we find multiple non-trivial magnetic orders. To quantify the effect on the fitting 
quantities, we calculate the minimum energies of each magnetic order for each material, and analyze the 
range of minima values seen for each material (distribution is plotted in SI Fig. 50). While the vast majority 
of materials have negligible variation, there are hundreds with variation >100 meV/atom (i.e. an order of 
magnitude larger than the energy error on the validation set), and a few that vary by <0.5 eV/atom. 

 
Long-range dispersion corrections Dispersion interactions, sometimes called van der Waals interac- 
tions, are crucial for describing the weak, long-range interactions between electrons. Common approxima- 
tions in DFT, such as PBE (22), cannot capture such long-ranged interactions, motivating the use of additive 
non-local corrections, such as DFT-D3 (41) or rVV10 (128). Inclusion of a dispersion correction to DFT 
is necessary to describe the dynamics of liquid water (129), the geometries and binding energies of layered 
solids (130), and stability of metal–organic frameworks (131), among many other examples. 

Additive dispersion corrections typically employ a physical model for dispersion interactions with em- 
pirical parameters optimized to cut off the correction at interatomic distances where approximate DFT is 
reliable. DFT-D3 is an interatomic potential which uses tabulated values of atomic polarizabilities to de- 
scribe two-body and, optionally, three-body Axilrod–Teller (132) dispersion interactions. As MACE-MP-0 is 
trained to PBE energies, forces, and stresses, it inherits PBE’s lack of long-range dispersion interactions. An 
optional, additive DFT-D3 dispersion correction can be applied to MACE-MP-0. The PyTorch implemen- 
tation of DFT-D3 used in this work is described in Ref. (29). The same parameters used in PBE-D3(BJ), 
i.e., DFT-D3 with a Becke-Johnson damping function (133), are used in the D3 correction to MACE-MP-0. 
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