Microwave-Based Quantum Control and Coherence Protection of Tin-Vacancy Spin Qubits in a Strain-Tuned Diamond-Membrane Heterostructure

Xinghan Guo,1,‡ Alexander M. Stramma,2,‡ Zixi Li,1 William G. Roth,2 Benchen Huang,3 Yu Jin,3 Ryan A. Parker,2 Jesús Arjona Martínez,2 Noah Shofer,2 Cathryn P. Michaels,2 Carola P. Purser,7 Martin H. Appel,2 Evgeny M. Alexeev,2,4 Tianle Liu,5 Andrea C. Ferrari,4 David D. Awschalom,1,5,6 Nazar Delegan,1,6 Benjamin Pingault,6,7 Giulia Galli,1,3,6 F. Joseph Heremans,1,6 Mete Atatüre,2,* and Alexander A. High1,6,†

1Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
2Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
3Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA
4Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, United Kingdom
5Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
6Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
7QuTech, Delft University of Technology, 2600 GA Delft, Netherlands

(Rceived 21 July 2023; revised 25 August 2023; accepted 22 September 2023; published 29 November 2023)

Robust spin-photon interfaces in solids are essential components in quantum networking and sensing technologies. Ideally, these interfaces combine a long-lived spin memory, coherent optical transitions, fast and high-fidelity spin manipulation, and straightforward device integration and scaling. The tin-vacancy center (SnV) in diamond is a promising spin-photon interface with desirable optical and spin properties at 1.7 K. However, the SnV spin lacks efficient microwave control, and its spin coherence degrades with higher temperature. In this work, we introduce a new platform that overcomes these challenges—SnV centers in uniformly strained thin diamond membranes. The controlled generation of crystal strain introduces orbital mixing that allows microwave control of the spin state with 99.36(9)% gate fidelity and spin coherence protection beyond a millisecond. Moreover, the presence of crystal strain suppresses temperature-dependent dephasing processes, leading to a considerable improvement of the coherence time up to $223(10)$ μs at 4 K, a widely accessible temperature in common cryogenic systems. Critically, the coherence of optical transitions is unaffected by the elevated temperature, exhibiting nearly lifetime-limited optical linewidths. Combined with the compatibility of diamond membranes with device integration, the demonstrated platform is an ideal spin-photon interface for future quantum technologies.

DOI: 10.1103/PhysRevX.13.041037

Subject Areas: Condensed Matter Physics, Quantum Physics, Quantum Information

I. INTRODUCTION

Color centers in diamond are a leading platform in quantum technologies, key achievements such as the demonstration of a quantum register [1–3], distant entanglement generation between three nodes [4], quantum
spin-orbit coupling and, thus, large orbital splitting \[25\] or by leveraging spin-strain interaction in randomly or controllably strained group IV centers \[3,24\]. With a spin-orbit coupling significantly higher than those of the silicon-vacancy (SiV) and the germanium-vacancy (GeV) centers, the SnV center has the highest reported spin coherence time at 1.7 K \[26\]. However, efficient microwave (MW) control of group IV spins requires the magnitude of spin-strain interaction to be comparable with the spin-orbit interaction, which for SnV necessitates strain approaching 0.1%. This degree of strain is challenging to achieve in microelectrical mechanical structures (MEMS) such as diamond cantilevers, with reported values on the order of 0.015% \[23\]. Therefore, a controlled process to generate approximately 0.1% strain in diamond is desired to improve SnV qubit performance by both increasing the operational temperature and enabling efficient MW driving.

In this work, we utilize heterogeneous integration of diamond membranes to generate strain-tuned SnVs. By bonding SnV-incorporated pristine diamond membranes to a glass substrate, we leverage the heterogeneous thermal expansion coefficients of the two materials to generate a uniform, in-plane strain in the diamond to the order of 0.1%. This strain greatly increases the energy splitting between the two orbital levels of the SnV and induces orbital mixing in the spin ground state. We demonstrate MW manipulation of the spin with 99.36(9)% Rabi fidelity at 4.50(2) MHz for 24 dBm MW input power. At 1.7 K, the implementation of dynamical decoupling allows the SnV to reach millisecond coherence time, which is largely preserved even at 4 K, owing to the strain-induced increased ground-state orbital splitting. In combination with near lifetime-limited optical linewidths up to 7 K, our spin-photon interface is compatible with broadly utilized low-infrastructure and cost-effective portable cryogenic systems. Additionally, the demonstrated strained-membrane heterostructure maintains robustness and flexibility for additional photonic, electronic, and MEMS integration. Our SnV-based diamond-membrane platform greatly reduces the technological barrier for establishing quantum nodes for networking.

A. SnVs in strained diamond

This work relies on strain engineering to improve SnV qubit performance. First, we demonstrate that heterogeneous thermal expansion disparities between diamond and glass in a diamond-membrane heterostructure are sufficient to generate uniform strain of the magnitude necessary to beneficially impact SnV. The diamond membranes used in this work are generated via the “smart-cut” method combined with isotopically purified (\(^{12}\)C) overgrowth. The membrane thickness is nominally 150 nm, with pristine crystal quality and atomically smooth surfaces \[27\]. To introduce a positive tensile strain inside the diamond membrane, we bond them onto 500-\(\mu\)m-thick fused silica substrates—a material with a low thermal expansion coefficient \((<1 \times 10^{-6} \text{ K}^{-1})\)—using a layer of hydrogen silsesquioxane (HSQ). The schematic of this strain generation method is shown in Fig. 1(a). The device is then annealed at 600 °C, beyond the temperature at which the HSQ solidifies to glass, bonding the heterostructure in a “zero-strain” condition \[28\]. Because of the mismatch in thermal contraction between diamond and fused silica and the negligible thickness of the diamond membrane compared to that of the fused silica substrate, cooling down the device to cryogenic temperature regime generates a positive (tensile), static strain profile in the diamond membrane with an estimated magnitude of 0.05% to 0.1% (see Secs. 1.3 and 1.4 in Supplemental Material \[29\] for details). This passive, uniform, and membrane-compatible strain generation is complementary to recent demonstrations of electromechanically induced strain on suspended diamond beams \[24,30\].

Figure 1(b) is the microscope image showing the layout of our diamond-membrane heterostructure device. Prior to the membrane bonding, we pattern and etch a 5-\(\mu\)m-deep trench on the fused silica to suspend part of the membrane and mitigate background fluorescence from the HSQ resist. To study MW control of the SnV centers, we pattern and deposit gold coplanar waveguides following membrane bonding.

The strain monotonically increases the orbital splitting of the SnV centers in the membranes, which can be directly verified in the photoluminescence (PL) spectra at 1.7 K. The energy level diagram of the strained SnV is shown in Fig. 1(c), highlighting the ground-state orbital splitting (\(\Delta_{gs}\)) and the respective contributions of spin-orbit coupling, strain, and magnetic Zeeman interaction in purple, blue, and green boxes, respectively. Figure 1(d) compares the spectra of a strained (unstrained) SnV center in a diamond membrane (bulk diamond) with \(\Delta_{gs} = \approx1300(850) \text{ GHz}\). This particular strained center is used in further optical, microwave, and spin characterizations in this work. Remarkably, we note that all color centers in the membrane are comparably strained. As shown in Fig. 1(e), we observe a distribution of the orbital branches splitting centered around 1500 GHz across different devices with a minimum (maximum) value of 1200 (1800) GHz. We carry out density functional theory calculations to compute strain susceptibilities and characterize the SnV spin-strain interaction (see Supplemental Material \[29\]); our results show that the increase of the splitting between orbital branches from 850 GHz to approximately 1500 GHz due to strain corresponds to a diamond-membrane strain magnitude of 0.075% (see Sec. 1.2 in Supplemental Material \[29\] for details). The consistent strain generation, in combination with our ability to perform additional integration and nanofabrication following membrane bonding \[31,32\], highlights the robustness and versatility of our platform.
B. Optical properties of SnV under strain

To investigate the potential of strained SnV as a spin-photon interface, we first verify that the symmetry of the defect is preserved even under considerable strain by characterizing the optical transitions as a function of the magnetic \( B \) field orientation. Using the \( h_{111} \) crystallographic axis—the high-symmetry axis of the SnV—as the reference, we rotate the \( B \) field both polar \( (\theta) \) and azimuthal \( (\phi) \) angles at the same magnitude (0.2 T). The absolute energy splitting between the two spin-conserving transitions \( A_1 - B_2 \) with respect to \( \theta \) and \( \phi \) is shown in Fig. 2(a), indicating that large splittings at moderate values of magnetic field are achievable which is ideal for later SnV spin initialization and control.

Similarly to the unstrained case, we observe a \( \phi \) rotational symmetry of the splitting with respect to \( h_{111} \), which corresponds to the intrinsic spin quantization axis. We further verify that the polarization of the SnV transitions (i.e., dipole operator matrix elements) remain along the \( h_{111} \) direction (see Sec. III. 1 in Supplemental Material [29]), as in the unstrained case [18].

From the \( B \)-field scan of the strained SnV, we note that, besides the normal \( A_1 - B_2 \) splitting maximum along the quantization axis, an additional local maximum at \( \theta = 90^\circ \)—the equator plane perpendicular to the quantization axis—is observed, with the relative \( A_1 - B_2 \) position being inverted, as verified by coherent population trapping.
C. Efficient MW control of the SnV spin

A critical component of a spin-photon interface is high-fidelity spin control, commonly achieved through MW driving of the electron spin. In the case of group IV centers, a MW field can drive the spin transition only in the presence of strain [23,43]. This arises due to the orthogonality of orbital states associated with the electron spin qubit of group IV centers [18]. Strain that is comparable in strength to spin-orbit coupling relaxes this orthogonality, enabling microwave control. SnV, with larger spin-orbit coupling (850 GHz) and smaller strain susceptibility than SiV and GeV, requires large crystal strain to meet this criteria. This strain requirement goes beyond the achievable magnitude demonstrated via active strain tuning [23] or implantation-induced strain [3].

To demonstrate efficient MW control, we utilize the nominal 0.1% crystal strain in the diamond membrane. We estimate an effective Landé factor $g$ of 1.62 for the transverse microwave field with the external magnetic field roughly aligned to the SnV quantization axis (see Sec. II. 1 in Supplemental Material [29]). This value is relatively high compared with the spin-orbit-dominated regime for unstrained centers ($\leq 0.3$) and is close to the free electron value ($g = 2$). In addition, we taper the MW waveguide around the measurement area by shrinking its width to 6 $\mu$m to enhance the microwave amplitude, as shown in Fig. 1(b). The distance between the target SnV and the waveguide is approximately 4 $\mu$m, ensuring an efficient exposure to the MW driving field (see Secs. 2.1–2.3 in Supplemental Material [29] for details).

We begin the MW control characterization by initializing the spin via optical pumping and scan the frequency of a MW field across the expected spin resonance while monitoring the fluorescence intensity of the spin readout at 1.7 K. In Fig. 3(a), we observe a clear signature of ODMR for the target SnV center. The 81.5 mT external magnetic field is aligned to the quantization axis by polarization measurements and 3D field scan. The ODMR shows a profile with two overlapping peaks separated by 628(182) kHz, indicating an interaction between the electronic spin of the SnV with another system in the vicinity, likely a $^{13}$C nuclear spin or the electron spin of a P1 center. Further investigation is needed to understand the nature of this interaction. By driving both power-broadened ODMR transitions, we are able to resonantly manipulate the spin state of the SnV with a Rabi frequency $\Omega/2\pi$ of 4.50(2) MHz. The Rabi oscillation curve and the chevrons (Rabi oscillations with varied driving frequency) are shown in Figs. 3(b) and 3(c). We observe a long-time averaged Rabi $\pi$-gate fidelity of 99.36(9)%, improving significantly from a previously demonstrated optical Raman-based spin control value [26]. We note that the MW power delivered to the device is approximately 24 dBm (250 mW) which is comparable to previous demonstrations on strained SiV [3]. We also characterize the power dependence of the Rabi rate. Starting from a linear dependence, the Rabi rate deviates to sublinear when the power surpasses 24 dBm due to excessive heating (see Sec. II. 4 in Supplemental Material [29]), which could be
optimized by replacing gold with superconducting metals (such as niobium or NbTiN) to deliver the MW signal.

We further characterize the single-qubit gate fidelity of MW control via randomized benchmarking. For this, we use the following set of Clifford gates: \{I, \pi_x, \pi_y, \pi_x/2, -\pi_x/2, \pi_y/2, -\pi_y/2\} (see Sec. V.1 in Supplemental Material [29]). To prevent excessive heating effect during benchmarking which would lead to undesired spin decoherence, we apply a slightly slower Rabi rate (2.8 MHz, 18 dBm) which requires no time buffer between gates. The benchmarking result is shown in Fig. 3(d). We extract an average Clifford gate fidelity of 97.7(1)%, indicating power-efficient MW control with high fidelity under stringent randomized benchmarking.

D. SnV spin coherence properties

We next utilize microwave control to characterize the SnV coherence at 1.7 K. We perform a Ramsey measurement as shown in Fig. 4(a). The Gaussian envelope of the Ramsey oscillations corresponds to a spin dephasing time \(T_2^*\) of 2.5(1) \(\mu s\). Similar to ODMR, we observe interaction with a proximal spin in the Ramsey measurement, and we verify that this does not originate from the detuning of the MW signal via phase-dependent readout (see Sec. V.2 in Supplemental Material [29]). Possible decoherence sources could be nearby vacancies and defects in the diamond membrane, as well as surface spins from both sides of the membrane [44].

Advanced pulse sequences, such as dynamical decoupling via Carr-Purcell-Meiboom-Gill (CPMG) and \(XY\) pulse sequences [45,46], allow us to extend the spin coherence properties.
coherence to millisecond timescales. The CPMG results are shown in Fig. 4(b). The $T_{2,\text{echo}}$ returns a value of $100(1)\,\mu$s, which is already longer than $35.5(30)\,\mu$s measured using all-optical spin echo process (see Secs. 4.3 and 4.4 in Supplemental Material [29]), in the absence of optically induced dephasing mechanisms. The $T_{2,\text{CPMG128}}$, comprising 128 refocusing microwave pulses, prolongs the SnV spin coherence to $1.57(8)\,\text{ms}$. We note that, with no signal normalization being applied, the CPMG figure indicates a high signal fidelity of approximately 80% for up to 128 pulses. Future developments on the MW driving fidelity including superconducting metals and faster Rabi pulses can further improve the signal fidelity to higher numbers of pulses. We plot the relationship between the $T_2$ and the number of CPMG or XY pulses $N$ in Fig. 4(c) and fit it with $T_2 \sim N^\beta$. The fitting curve returns a sublinear dependence with a $\beta$ factor of 0.593(8). We observe minimal $T_2$ differences between CPMG and XY sequences. XY sequences are more resilient to control pulse errors compared to CPMG [46], verifying that the observed coherence is not limited by our control (see Sec. V.4 in Supplemental Material [29]).

E. Spin-photon interface at 4 K

Finally, we demonstrate that our strained SnV platform shows state-of-the-art spin coherence for group IV color centers at 4 K. For group IVs, the dominant decoherence source of the electronic spin is the electron-phonon interaction (phonon-mediated decay) between orbital branches [20,43]. The electron-phonon interaction rate depends on the temperature-dependent phonon population and the energy splitting $\Delta_{gs}$ between orbital branches. Therefore, enhanced coherence of the group IV centers can be achieved via either cooling down to millikelvin temperature [21,22], increased energy splitting by using heavier group IV elements [25], engineering of the phonon density of states [47], or strain engineering [24]. Here, we utilize both a heavy element (Sn as compared to Si and Ge) and crystal strain in diamond to improve electron spin coherence at elevated temperatures.

The Rabi oscillation of the SnV at 4 K is shown in Fig. 5(a). The fidelity is characterized to be $97.7(5)\%$, only slightly lower than the value at 1.7 K due to background heating limitations. We characterize the average gate fidelity via randomized benchmarking at 4 K using the same 2.8 MHz Rabi rate, returning a gate fidelity of $95.7(3)\%$, confirming the maintained high-performance spin manipulation of the strained SnV at 4 K.

Equipped with high-fidelity Rabi control, we investigate the spin coherence of the SnV centers at elevated temperatures. Because of the much larger splitting $\Delta_{gs}$ of the strained SnV (approximately 1300 GHz) compared with bulk SnV (approximately 850 GHz), electron-phonon dephasing onsets at higher temperatures. Figure 5(c) shows the $T_1^{\text{spin}}$, $T_2$, $T_{2,\text{echo}}$, and $T_{2,XY}$ versus temperature. Fitting the same $\beta$ factor in $T_2 \sim N^\beta$ using Hahn-echo and XY4 coherence times returns a value of $0.391(8)$ at 4 K and $0.014(4)$ at 4.5 K, indicating that the dominant decoherence mechanism becomes phonon-induced orbital transitions instead of the spin bath.

From Fig. 5(c), we notice a much lower dephasing time compared with the decay time $T_1^{\text{spin}}$ [48]. This feature originates from the fact that only spin-flipping transitions between the lower and upper orbital branches drive $T_1^{\text{spin}}$, whereas $T_2$ is sensitive to dephasing by the spin-conserving transitions due to different precession frequencies in the orbital branches [23]. In our case, the phonon transitions are highly cycling due to the aligned magnetic field. Nevertheless, $T_2$ at 4 K remains at $2.7(1)\,\mu$s—comparable...
to the 1.7 K value—and \( T_{2,\text{echo}} \) decreases only slightly to 74(2) \( \mu s \), with \( T_{2,\text{XY}} \) reaching the depolarization-limited \( T_2 = 223(10) \) \( \mu s \). It is worth emphasizing that all of these are record-high values for all group IV spin qubits at 4 K to date.

To demonstrate the potential of the strained SnV center as a promising spin-photon interface at elevated temperature, we investigate the temperature dependence of the SnV optical coherence. As shown in Fig. 5(d), we observe a significant strain of 0.05% to 0.1% in diamond, enabling efficient, high-fidelity microwave control of the SnV spin. The presence of the strain also suppresses the phonon-mediated decay and improves the spin coherence of the SnV at 4 K, which greatly reduces the technological barrier to widespread utilization and deployment of solid-state quantum technologies. We create simple heterostructures that leverage differences in thermal expansion to passively generate higher strain through heterostructure optimization and/or additional active tuning. Our platform, derived from scalable diamond-membrane generation, is compatible with further on-chip integration, such as microwave coplanar waveguides, integrated photonics [32], and MEMS. Finally, 4 K cryostats are relatively affordable and less infrastructure intensive in comparison to cryogen-free 1.7 K and mK dilution-fridge systems. Therefore, the demonstrated spin-photon interface at 4 K can reduce barriers to widespread utilization and deployment of solid-state quantum technologies.

**II. CONCLUSIONS**

In this work, we demonstrate that SnV in strained diamond membranes is a promising platform for quantum technologies. We create simple heterostructures that leverage differences in thermal expansion to passively generate significant strain of 0.05% to 0.1% in diamond, enabling efficient, high-fidelity microwave control of the SnV spin. The presence of the strain also suppresses the phonon-mediated decay and improves the spin coherence of the SnV at 4 K, which greatly reduces the technological barrier for quantum networking applications. We reach a Rabi \( \pi \) gate fidelity of 99.36(9)% [97.7(5)%] with a randomized single-qubit gate fidelity of 97.7(1)% [95.7(3)%] at 1.7 K (4 K). Dynamical decoupling sequences allow the SnV spin coherence to reach 1.57(8) ms at 1.7 K and 223(10) \( \mu s \) at 4 K. In the future, this value can be further enhanced by generating higher strain through heterostructure optimization and/or additional active tuning. Our platform, derived from scalable diamond-membrane generation, is compatible with further on-chip integration, such as microwave coplanar waveguides, integrated photonics [32], and MEMS. Finally, 4 K cryostats are relatively affordable and less infrastructure intensive in comparison to cryogen-free 1.7 K and mK dilution-fridge systems. Therefore, the demonstrated spin-photon interface at 4 K can reduce barriers to widespread utilization and deployment of solid-state quantum technologies.

**Note added.** Recently, we became aware of another related manuscript [49].

**ACKNOWLEDGMENTS**

This work on strain engineering of group IV color centers is supported by the Air Force Office of Scientific Research under Grant No. FA9550-22-1-0518. This work acknowledges funding through Q-NEXT, supported by the U.S. Department of Energy, Office of Science, National Quantum Information Science Research Centers. The experiment receives support from the ERC Advanced Grant PEDESTAL (884745) and the EU Quantum Flagship 2D-SIPC. Membrane integration research is supported by NSF Grant No. AM-2240399. Diamond growth related efforts were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Science and Engineering Division (N.D.). The membrane bonding work is supported by NSF Grant No. AM-2240399. This work made use of the Pritzker Nanofabrication Facility (Soft and Hybrid Nanotechnology Experimental Resource, NSF ECCS-2025633) and the Materials Research Science and Engineering Center (NSF DMR-2011854) at the University of Chicago. A.M.S. acknowledges support from EPSRC/NQIT, R. A. P. from the General Sir John Monash Foundation and G-research, J. A. M. from the Winton Program and EPSRC DTP, and C. P. M. from the EPSRC DTP. B. P. acknowledges funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 840968. The authors thank Eric I. Rosenthal, Abigail J. Stein, Hope Lee, Srujan Meesala, and Dorian Gangloff for insightful discussions and Haoxiong Yan and Ming-Han Chou for experimental help.


