Ultrafast Electronic Relaxation Dynamics of Atomically Thin MoS₂ Is Accelerated by Wrinkling

Ce Xu, Guoqing Zhou, Evgeny M. Alexeev, Alisson R. Cadore, Ioannis Paradisanos, Anna K. Ott, Giancarlo Soavi, Sefaattin Tongay, Giulio Cerullo, Andrea C. Ferrari,* Oleg V. Prezhdo,* and Zhi-Heng Loh*

ABSTRACT: Strain engineering is an attractive approach for tuning the local optoelectronic properties of transition metal dichalcogenides (TMDs). While strain has been shown to affect the nanosecond carrier recombination dynamics of TMDs, its influence on the sub-picosecond electronic relaxation dynamics is still unexplored. Here, we employ a combination of time-resolved photoemission electron microscopy (TR-PEEM) and nonadiabatic ab initio molecular dynamics (NAMD) to investigate the ultrafast dynamics of wrinkled multilayer (ML) MoS₂ comprising 17 layers. Following 2.41 eV photoexcitation, electronic relaxation at the Γ valley occurs with a time constant of 97 ± 2 fs for wrinkled ML-MoS₂ and 120 ± 2 fs for flat ML-MoS₂. NAMD shows that wrinkling permits larger amplitude motions of MoS₂ layers, relaxes electron–phonon coupling selection rules, perturbs chemical bonding, and increases the electronic density of states. As a result, the nonadiabatic coupling grows and electronic relaxation becomes faster compared to flat ML-MoS₂. Our study suggests that the sub-picosecond electronic relaxation dynamics of TMDs is amenable to strain engineering and that applications which require long-lived hot carriers, such as hot-electron-driven light harvesting and photocatalysis, should employ wrinkle-free TMDs.

KEYWORDS: transition metal dichalcogenides, ultrafast carrier dynamics, strain engineering, electron–phonon scattering, time-resolved photoemission electron microscopy, nonadiabatic ab initio molecular dynamics

T

transition metal dichalcogenides (TMDs) are a class of layered materials (LMs) with a range of electronic and optoelectronic properties. Semiconducting TMDs undergo an indirect-to-direct bandgap transition when their thickness is reduced down to a single layer (1L). TMDs demonstrate high carrier mobilities ($\sim 10^2 - 10^3$ cm²/V·s), valley selectivity in photoexcitation, and large nonlinear optical response ($N^{(2)} \sim 10^{-12} - 10^{-11}$ m²/V², $N^{(3)} \sim 10^{-19} - 10^{-17}$ m³/V³) and their optical properties are dominated by excitonic resonances. These properties, along with the ability to fabricate wafer-scale TMD thin films, pave the way for a variety of applications in photodetectors, light-emitting diodes, and modulators.

The versatility of TMDs and their range of applications can be further extended by tuning their electronic band structure, e.g., by changing the composition. Various synthesis procedures yield a family of TMDs comprising members with different chemical compositions, each exhibiting a unique bandgap and band offsets relative to one another. The properties can be further tuned by chemical doping, e.g., by introducing intercalating metals or molecules, or by substitutional doping with transition metals, or by alloying. For a fixed chemical composition, the band structure can be varied by applying electric fields, pressure, or strain. The mechanical properties of TMDs—are large Young’s modulus (~ 0.4 TPa) and high breaking strength (~ 20...
GPa\(^{31,43}\) and elasticity\(^{44,45}\)—make them amenable to strain engineering.\(^{39,46,47}\) This approach to tuning the band structure\(^{48-50}\) has been exploited, e.g., to drive a semiconductor-to-metal transition in TMDs,\(^{51}\) to realize a superlattice of artificial atoms in strain-textured MoS\(_2,\)\(^{52}\) and to improve the performance of TMDs in optoelectronic devices.\(^{53-55}\) While the effect of strain on bandgaps\(^{56}\) and steady-state optoelectronic properties\(^{53-55}\) of TMDs has been extensively investigated,\(^{37-40,57}\) its influence on the non-equilibrium carrier dynamics of TMDs is still unexplored. Information on ultrafast carrier dynamics is needed to understand the carrier transport and optoelectronic characteristics of semiconductors.\(^{58}\) Ab initio simulations of TMDs\(^{59}\) and their heterostructures\(^{60}\) reveal that strain affects the time scales for electronic dephasing,\(^{59}\) carrier recombination,\(^{61}\) and charge transfer.\(^{60}\) Time-resolved photoluminescence (PL) studies of 1L-TMDs on flexible strained substrates revealed an increase in carrier recombination rate with strain in 1L-MoS\(_2\) and 1L-WSe\(_2,\)\(^{61}\) whereas the carrier recombination dynamics of 1L-WS\(_2\) was reported to be insensitive to strain,\(^{61}\) attributed to weaker exciton–phonon coupling in S-based than Se-based TMDs.\(^{61}\)

Here, we present an experimental—theoretical study of the ultrafast dynamics of wrinkled, multilayer (ML) MoS\(_2\) comprising 17 layers. Micrometer-sized wrinkles of 0.5 \(\mu\)m height and 2 \(\mu\)m width result in localized strain. Time-resolved photoemission electron microscopy (TR-PEEM) combines the pump–probe technique with a PEEM microscope to simultaneously achieve high spatial (<80 nm) and temporal (<60 fs) resolution,\(^{62,63}\) making it ideal for investigating the ultrafast dynamics of spatially heterogeneous samples.\(^{64-69}\) We show that wrinkled ML-MoS\(_2\) undergoes \(\sim 1.2\times\) faster electron cooling than flat ML-MoS\(_2.\) Ab initio molecular dynamics shows that wrinkling increases nonadiabatic coupling up to \(\sim 1\) eV above the ML-MoS\(_2\) conduction band minimum (CBM), hence accelerating electronic relaxation.

RESULTS AND DISCUSSION

Figure 1a is an optical microscope image of a representative sample, containing regions with different numbers of layers (\(N\)). The wrinkles propagate through areas with different \(N\) and can be distinguished from flat ML-MoS\(_2\) by their different color and optical contrast. Figure 1b is a topography map of the same region acquired by atomic force microscopy (AFM). The inset plots the cross-sectional height profile of the wrinkle.
To accurately determine changes in and the out-of-plane flake. Shear (C) and layer softening with increasing electron + C to a Lorentzian line shape to determine the peak position, Pos(C N),joins Pos(LBM N). (d) Plot of Pos(C N) vs number of layers. The black curve is the plot of eq 1 based on Pos(C∞) = 33.93 cm\(^{-1}\). The colored solid lines are Pos(C N) for the three ML-MoS regions with dashed lines indicating the total fitting error.

along the direction shown by the green line in Figure 1b. Statistical analysis of three height profiles along a 5 \(\mu\text{m}\) length yields a mean (standard deviation) of 2.07 \(\mu\text{m}\) (0.02 \(\mu\text{m}\)) and 0.50 \(\mu\text{m}\) (0.01 \(\mu\text{m}\)) for width and height, respectively (see Supporting Information).

Raman spectroscopy is used to identify doping, but sensitive to doping, and quantify variations in flat regions (Figure 3d). Larger wrinkles located close to a diagonal show a stronger softening of \(A_1'\), with a red-shift of \(\leq0.18\text{ cm}^{-1}\). A weaker red-shift is seen for the smaller wrinkle close to the bottom-right corner, \(\leq0.14\text{ cm}^{-1}\). Pos(\(A_1'\)) does not show a trend and is compatible with random variations in flat regions (Figure 3d). \(E'\) softens with tensile strain\(^7\) by \(\sim7.4\text{ cm}^{-1}/\%\). \(A_1'\) is weakly coupled to strain, but sensitive to doping,\(^7\) softening with increasing electron density.\(^7\) Thus, Raman microscopy is consistent with tensile strain \(\varepsilon < 0.03\%\).

To investigate the effect of wrinkles on the electronic relaxation dynamics, we carry out TR-PEEM measurements.
with a 2.41 eV pump and 3.61 eV probe (see Supporting Information for details of the experimental setup). Electrons (e) in the valence band (VB) are excited to the conduction band (CB) by the 2.41 eV pump. After a variable time delay of −0.5 to +1.5 ps, a 3.61 eV probe pulse ejects these e, which are refocused by a column of electrostatic lenses onto an array detector to yield the PEEM image. Power-dependent measurements reveal that the pump and probe interactions with the sample are both one-photon processes (Supporting Information). The lateral momentum conservation requirement in photoemission confines the probe window for 3.61 eV probing to the vicinity of the Γ point of the CB (blue-shaded areas in Figure 4a, see Supporting Information). The ML-MoS\textsubscript{2} band structure confirms that this region is readily accessed by 2.41 eV photoexcitation. Accordingly, we infer that the observed ultrafast dynamics originate from electronic relaxation from the vicinity of the Γ point. Following photoexcitation, e can relax via a combination of intravalley and intervalley electron–phonon (e–ph) scattering to reach the CBM prior to carrier recombination (Figure 4a). Figure 4b is a series of TR-PEEM images acquired at pump–probe time delays of 0, 40, 80, 120, 200, and 400 fs. The Au substrate exhibits the most intense PEEM signal. 4L- and 5L-MoS\textsubscript{2} regions adjacent to it have higher count rates than the 17L region, most likely due to the nonmonotonic variation of the UV photoionization cross section with N. Figure 4c plots the temporal evolution of the TR-PEEM signals, spatially integrated over wrinkled and flat regions (boxed regions in Figure 4b), chosen based on the uniform thickness over an extended area (∼35 μm2). The time traces can be fit to the instrumental response function convolved with a single-exponential decay, with time constants of 97 ± 2 fs for wrinkled and 120 ± 2 fs for flat ML-MoS\textsubscript{2}. The decay of the PEEM signal tracks the electronic relaxation dynamics at Γ, as they undergo e–ph scattering and leave the probe window to populate the lower-lying valleys in the CB (Figure 4a). We can rule out the possibility that e transfer to the underlying Au substrate contributes to the observed dynamics, since the interaction with the substrate is expected to be stronger for flat MoS\textsubscript{2}, in contrast with the faster decay of TR-PEEM observed for the wrinkled regions in Figure 4c.

To confirm that electronic relaxation rates are enhanced at wrinkles, we extract the time traces for each pixel of the TR-PEEM image and fit them to a single-exponential decay.
convolved with the 55 fs FWHM instrumental response function (cross-correlation of the temporal intensity profiles of the 2.41 and 3.61 eV pulses). The time constant at each pixel is used to create a lifetime map that reveals the spatial distribution of relaxation times (Figure 5a). Prominent blue stripes in the lifetime map, which encode regions with shorter relaxation times, coincide with the wrinkles. Figure 5b plots histograms of relaxation times on wrinkled and flat ML-MoS\(_2\), extracted from the regions of interest defined in Figure 4b. These have a mean (standard deviation) of 89 (14 fs) and 114 fs (14 fs) for the wrinkled and flat regions, respectively (see Supporting Information for histograms of other wrinkles). The lifetime map and histograms both reveal faster electronic relaxation in the wrinkled region, in good agreement with the results obtained from the analysis of the spatially integrated time traces (Figure 4c). The slight deviation between the two sets of values arises from the fact that the lifetime obtained from the spatially integrated measurement represents an amplitude-weighted average time constant instead of a simple average.

To model the impact of wrinkles on carrier dynamics in ML-MoS\(_2\), we build two periodic systems, representing flat and wrinkled bulk MoS\(_2\) (B-MoS\(_2\)), shown in Figures 6a and 6b, respectively. The B-MoS\(_2\) models are represented by rectangular simulation cells with 1 \times 10 \times 1 \text{MoS}_2 unit cells, replicated along the armchair direction and containing 120 atoms each. This is done to model an undulation mimicking the experiment, although on a nanometer rather than micrometer scale due to computational limitations. The length of the supercell for flat B-MoS\(_2\) is 54.5 Å. Wrinkled B-MoS\(_2\) is
constructed by mapping the flat system into a wave along the armchair direction with a 2.5 Å radius of curvature (Figure 6b), as required to maintain the wave shape. The supercell length of the wrinkled system is reduced to 52 Å due to the mapping, and the thickness is increased by 11% to 6.7 Å for each layer, after geometric optimization. The wavelike structure is needed to maintain system periodicity and eliminate artificial fluctuations of the fitted time scale. In the quantum regime can be regarded as the beginning of a Rabi oscillation. The flat initial part of the decay curve is needed to achieve the quantum Zeno effect, in which a frequent measurement on a quantum system stops the dynamics.

Exponential fitting of the simulated dynamics in Figure 6d gives time constants of ∼117 and 90 fs for flat and curved B-MoS	extsubscript{2} respectively, with ∼23% faster electronic relaxation in the curved system. The time constants for different initial excess energies (Figure 6e) show a similar faster relaxation for curved than flat B-MoS	extsubscript{2}. The scatter in the low-energy region (∼0−0.3 eV) of Figure 6e is due to the low DOS near the CB edge. The flat initial part of the decay curve is needed to achieve the quantum Zeno effect, in which a frequent measurement on a quantum system stops the dynamics.

The simulated electronic relaxation dynamics of flat and curved B-MoS	extsubscript{2}, both with an initial excess energy of 1 eV, similar to the experiments, are shown in Figure 6d. Electronic relaxation is faster for curved than flat B-MoS	extsubscript{2}, in agreement with experiments (Figure 4c). The simulated quantum dynamics exhibits a short, <100 fs, Gaussian regime, before switching to an exponential decay, as observed experimentally in Figure 4c. The transition to exponential decay occurs after 10 or more states of the Hilbert space. For <100 fs, <10 states are involved in the electronic relaxation, and the Gaussian regime can be regarded as the beginning of a Rabi oscillation. The flat initial part of the decay curve is needed to achieve the quantum Zeno effect, in which a frequent measurement on a quantum system stops the dynamics.

Bending B-MoS	extsubscript{2} away from its equilibrium geometry to produce wrinkles perturbs interatomic interactions and decreases the width of the electronic bands. We observe a steeper rise of the density of states (DOS) near the CB edge and a reduction of the energy range from the CB edge to the energy where its DOS peak (Figure 6c). Depending on its extent, structural deformation can lead to major changes in the electronic properties, such as a semiconductor-to-metal transition.

Here, the DOS changes are ∼10%, sufficient to influence the relaxation dynamics. As the PEEM measurements are not energy resolved, these cannot determine spectral shifts associated with the theoretically predicted shift in the CB DOS. To provide an additional test of the model used, we calculate the electronic properties of a system with a 50% smaller supercell length of the fitted time scale. In the quantum Zeno effect, in which a frequent measurement on a quantum system stops the dynamics.

Exponential fitting of the simulated dynamics in Figure 6d gives time constants of ∼117 and 90 fs for flat and curved B-MoS	extsubscript{2}, respectively, with ∼23% faster electronic relaxation in the curved system. The time constants for different initial excess energies (Figure 6e) show a similar faster relaxation for curved than flat B-MoS	extsubscript{2}. The scatter in the low-energy region (∼0−0.3 eV) of Figure 6e is due to the low DOS near the CB edge. The, the dynamics is complex and cannot be simply described by an exponential function, resulting in pronounced fluctuations of the fitted time scale. In the ∼0.3−1.5 eV region, the curved B-MoS	extsubscript{2} shows consistently faster dynamics than the flat one. Overall, a relaxation time constant reduction of ∼10−40% is observed due to wrinkling, consistent with the experimentally observed ∼20% reduction. The difference decreases as the initial energy approaches ∼1.5 eV above the band edge, since the DOS decreases faster in the region for curved B-MoS	extsubscript{2} (Figure 6c). The calculated <100 fs relaxation times for curved MoS	extsubscript{2} over the initial energy range $E - E_{CBM} \sim 0.6$−1.5 eV remain shorter than the shortest relaxation time calculated for flat MoS	extsubscript{2} (106 fs, at an initial excess energy of ∼1.3 eV). Hence, the observed faster relaxation dynamics is robust, with respect to changes in the initial excess energy induced by wrinkling.

To provide further insights into the origin of the accelerated electronic relaxation due to wrinkling, we analyze the NA coupling matrix elements, given by
where \(\langle \Phi_i | \nabla \mathbf{R} | \Phi_j \rangle \) is the derivative coupling and \(\mathbf{R} \) is the atomic velocity. The NA coupling between pairs of orbitals \(\Phi_i \) and \(\Phi_j \), starting from the lowest unoccupied molecular orbital (LUMO) up to LUMO+120, for flat and curved B-MoS\(_2\) is shown in Figure 7a and 7b, respectively. The LUMO+120 resides 1.7 and 1.6 eV above the CB edges of flat and curved B-MoS\(_2\), respectively, with the smaller energy range spanned by 120 orbitals of curved B-MoS\(_2\) reflecting the electronic band narrowing. The NA coupling between adjacent orbitals is larger than that between other terms, evident from the red diagonal strips in Figure 7a,b. However, the red strip covers a broader energy range in the curved system. For pairs of orbitals that reside in the 0–0.7 eV energy range, corresponding to orbitals that span the LUMO to LUMO+40, the NA coupling values are <50 meV in flat and >50 meV in curved B-MoS\(_2\). The larger NA coupling of curved B-MoS\(_2\) accelerates electronic relaxation.

According to eq 2, the NA coupling matrix element \(d_{ij} \) is determined by the derivative coupling \(\langle \Phi_i | \nabla \mathbf{R} | \Phi_j \rangle \) and the atomic velocity \(\mathbf{R} \). The latter is dependent on the temperature of the system and the atomic mass, both of which are identical for flat and curved B-MoS\(_2\). The difference in the NA couplings for flat and wrinkled B-MoS\(_2\) therefore arises from the \(\langle \Phi_i | \nabla \mathbf{R} | \Phi_j \rangle \) term, which encodes the response of the electronic subsystem to atomic motions. Generally, larger amplitude motions give stronger NA coupling, because they lead to larger changes in the wave functions. Figure 7c shows the out-of-plane fluctuations of B-MoS\(_2\) along the nonadiabatic ab initio molecular dynamics (NAMD) trajectory. These motions, characterized by the largest amplitude and length scale, are most distinctive between flat and curved B-MoS\(_2\). Local modes, such as Mo–S stretching and S–Mo–S bending, have little dependence on the B-MoS\(_2\) curvature. Curved B-MoS\(_2\) has a \(\sim 2–3 \times \) larger out-of-plane oscillation amplitude than flat B-MoS\(_2\), which in turn yields a stronger NA coupling, hence a faster electronic relaxation. For a given strain, an increase in thickness leads to a decrease in the amplitude of out-of-plane motion, which in turn decreases the nonadiabatic coupling, hence slowing electronic relaxation. Figure 7d shows the calculated fast Fourier transform (FFT) power spectra of the phonon modes that mediate electronic relaxation in both flat and curved B-MoS\(_2\). The FFT powers are larger for curved B-MoS\(_2\).
MoS$_2$, consistent with stronger nonadiabatic coupling and hence faster relaxation dynamics for curved B-MoS$_2$. The calculated low-frequency peak ~ 8 cm$^{-1}$ for curved B-MoS$_2$ is consistent with the previously observed Pos(LBM$_{17,16}$) ~ 5.2 cm$^{-1}$ for 17L-MoS$_2$ whereas the peak ~ 33 cm$^{-1}$ for flat B-MoS$_2$ matches the experimentally observed Pos(C$_{17,1}$) ~ 34 cm$^{-1}$ in 17L-MoS$_2$ in Figure 2c and ref 70.

CONCLUSIONS

We used the high spatial and temporal resolution of TR-PEEM to investigate the spatially heterogeneous ultrafast dynamics of wrinkled ML-MoS$_2$. Probing the ultrafast dynamics at the Γ point reveals faster electronic relaxation for wrinkled regions than for flat regions. Nonadiabatic ab initio molecular dynamics shows that electron–phonon coupling is enhanced by wrinkling, hence facilitating electronic relaxation. Our study suggests that the sub-picosecond electronic relaxation dynamics of TMDs is amenable to strain engineering and that applications that require long-lived hot carriers, such as hot-e-driven light harvesting and photocatalysis, should employ wrinkle-free TMDs.

METHODS

Sample Preparation. Wrinkled ML-MoS$_2$ is prepared as follows. A 2H-MoS$_2$ bulk crystal grown by chemical vapor transport is exfoliated by micromechanical cleavage (MC) on Nitto Denko tape and then placed onto a polydimethylsiloxane (PDMS) stamp ($\sim 1 \times 1$ cm2) attached to a glass slide for inspection under an optical microscope. Optical contrast is used to estimate the flake thickness prior to transfer. The PMDS stamp with the selected ML-MoS$_2$ flake is then cut with a razor blade to a smaller size ($\sim 1.5 \times 1.5$ mm2). The glass slide with the ML-MoS$_2$/PDMS stamp is fixed by vacuum on a positioner with motorized xyz micromanipulators under an optical microscope. It is then tilted by ~ 10–15° with respect to the target substrate. The larger the tilt angle, the stronger the pressure applied by the z micromanipulator to deform the PDMS upon coming in contact with the target substrate, and the greater the strain induced during transfer. Thus, the pressure is varied with tilt angle and PDMS size. Prepatterned Au/Cr (50/2 nm) pads of 2×2 mm2 are defined by a shadow mask, using Kapton tape on 90 nm SiO$_2$/Si, followed by thermal evaporation at $\sim 5 \times 10^{-7}$ Torr at 0.5 Å/s. Before transfer, the Au surface is cleaned in acetone and isopropanol for 30 s each, followed by 60 s plasma treatment at 10 W. ML-MoS$_2$/PDMS flakes are then aligned on the Au pads at 40 °C and stamped using motorized xyz micromanipulators. After ML-MoS$_2$ touches the Au substrate, the temperature is increased to 60 °C. This results in different thermal expansion for PDMS, ML-MoS$_2$, and Au, inducing the formation of wrinkles. At 60 °C, PDMS is peeled off with the motorized xyz micromanipulators, leaving wrinkled ML-MoS$_2$ on
Au. All wrinkles are formed due to the same process, i.e., a combination of thermal expansion mismatch and deformation of the PDMS stamp, and, as such, most likely belong to the same type.

Sample Characterization. AFM images are acquired with a Bruker Dimension Icon in tapping mode. Raman measurements are performed with a Horiba LabRam HR Evolution confocal system, equipped with a 1800 l/mm grating, volume Bragg filters with a cutoff frequency of ∼5 cm⁻¹ at 514 nm, and a 100× objective (numerical aperture = 0.9), resulting in a spot size of ∼1 μm. The laser power is kept at <0.1 mW to avoid sample damage. Identification of N for N > 5 requires measurements of Pos(C) with a precision that exceeds the spectral resolution of the system (typical shift of ∼0.1 cm⁻¹ spectral resolution of ∼0.6 cm⁻¹). However, peak position evaluation with subpixel accuracy can be achieved via spectral fitting. The accuracy is determined by fitting error, statistical errors arising from spatial variation, CCD noise, and errors associated with the registry of pixels relative to the position of peaks. The latter provides the maximum contribution to the total error, limiting the accuracy to ±0.06 cm⁻¹.⁴⁻⁷³

TR-PEEM Measurements. We use a high-repetition-rate, high-power Yb fiber laser (Tangerine 30, Amplitude Systems), which delivers 40 μJ, 320 fs pulses at 0.6 MHz and a 1.03 μm center wavelength (1.20 eV photon energy). After spectral broadening in a Xe-filled hollow-core fiber, a combination of highly dispersive chirped mirrors and a pair of wedges compress pulses to 50 fs FHWM duration. Second and third harmonics, with photon energies of ∼2.41 and 3.61 eV, are generated through nonlinear frequency conversion steps in β-barium borate crystals, followed by temporal compression using a prism pair. The FHWM pulse duration of the second harmonic, which acts as a pump beam, is ∼46 fs, whereas that of the third harmonic, acting as a probe, is ∼40 fs. The pump beam is sent into a computer-controlled optical delay line to vary the time delay between pump and probe pulses. The overall time resolution, as determined by pump–probe cross-correlation at the sample position, is ∼55 fs FHWM. The error bars reported for the decay time constants correspond to the standard error of the fit. The PEEM microscope (Focus GmbH, PEEM-IS) has a spatial resolution of ∼77 nm according to the 16–84% criterion, defined as the distance over which the image intensity decreases from 84% to 16% of its maximum. At each time delay, the image acquisition time is 19 s.

Theoretical Simulations. The geometric structure optimization and adiabatic molecular dynamics (MD) simulations are performed with the Vienna Ab initio Simulation Package (VASP) employing the Perdew–Burke–Ernzerhof (PBE) exchange–correlation functional and the projector augmented wave (PAW) method. The van der Waals interactions are treated using the DFT-D3 method as they are critical for LMs. The Brillouin zone is sampled with 7 × 1 × 3 Γ-centered Monkhorst–Pack grids, and the energy cutoff for the plane wave basis is set to 340 eV. After geometry optimization, we perform adiabatic MD. First, we heat the systems to 300 K with the Nose-Hoover thermostat and thermalize for 2 ps. Then, we generate 2 ps microcanonical trajectories with a 1 fs time step. Using the generated trajectories, we perform NAMD simulations implemented within the real-time time-dependent density functional theory framework in PYX-AID.⁶⁴ Phase correction and state ordering are incorporated before computing NA coupling.²¹,²² Fewest switches surface hopping (FSSH) is used to study hot e relaxation. To mimic the experiments, we performed multiple NAMD simulations on each system with different initial excitations. These start with electrons residing in Kohn–Sham orbitals within the CB with energies from 0 to ∼1.5 eV relative to the CB edge. We perform 1000 stochastic FSSH realizations for each initial configuration.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsnano.3c02917.

AFM measurements, static PEEM image and calculated density of states, determination of photon order and probe window, extended time traces of wrinkled and flat 1T-L-MoS₂, electronic structure of a larger wrinkled B-MoS₂ (PDF)

AUTHOR INFORMATION

Corresponding Authors

Andrea C. Ferrari — Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, United Kingdom; Email: acf26@cam.ac.uk

Oleg V. Prezhdo — Department of Physics and Astronomy and Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States; orcid.org/0000-0002-5140-7500; Email: prezhdo@usc.edu

Zhi-Heng Loh — School of Chemistry, Chemical Engineering and Biotechnology, and School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore; orcid.org/0000-0001-9729-9632; Email: zhiheng@ntu.edu.sg

Authors

Ce Xu — School of Chemistry, Chemical Engineering and Biotechnology, and School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore

Guoqing Zhou — Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States; orcid.org/0000-0002-4000-8467

Evgeny M. Alexeev — Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, United Kingdom; orcid.org/0000-0002-8149-6364

Alisson R. Cadore — Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, United Kingdom

Ioannis Paradisanos — Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, United Kingdom; orcid.org/0000-0001-8310-710X

Anna K. Ott — Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, United Kingdom

Giancarlo Soavi — Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, United Kingdom

Selaattin Tongay — School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States; orcid.org/0000-0001-8294-984X

Giulio Cerullo — Department of Physics, Politecnico di Milano, I-20133 Milano, Italy; IFN-CNR, I-20133 Milano, Italy; orcid.org/0000-0002-9534-2702

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We acknowledge funding from the Ministry of Education, Singapore (MOE-T2EP50221-0004 and RGI/22), the EU Graphene Flagship, ERC Grants Hetero2D, GIP, EU Grants GRAP-X, CHARM, EPSRC Grants EP/K01711X/1, EP/K017144/1, EP/N010345/1, EP/L016807/1, EP/V00055/
REFERENCES

(60) Tan, P. H.; Han, W. P.; Zhao, W. J.; Wu, Z. H.; Chang, K.; Wang, H.; Wang, Y. F.; Bonini, N.; Marzari, N.; Pugno, N.; Savini, G.;